ترغب بنشر مسار تعليمي؟ اضغط هنا

1.3 mm Wavelength VLBI of Sagittarius A*: Detection of Time-Variable Emission on Event Horizon Scales

509   0   0.0 ( 0 )
 نشر من قبل Vincent L. Fish
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Sagittarius A*, the ~4 x 10^6 solar mass black hole candidate at the Galactic Center, can be studied on Schwarzschild radius scales with (sub)millimeter wavelength Very Long Baseline Interferometry (VLBI). We report on 1.3 mm wavelength observations of Sgr A* using a VLBI array consisting of the JCMT on Mauna Kea, the ARO/SMT on Mt. Graham in Arizona, and two telescopes of the CARMA array at Cedar Flat in California. Both Sgr A* and the quasar calibrator 1924-292 were observed over three consecutive nights, and both sources were clearly detected on all baselines. For the first time, we are able to extract 1.3 mm VLBI interferometer phase information on Sgr A* through measurement of closure phase on the triangle of baselines. On the third night of observing, the correlated flux density of Sgr A* on all VLBI baselines increased relative to the first two nights, providing strong evidence for time-variable change on scales of a few Schwarzschild radii. These results suggest that future VLBI observations with greater sensitivity and additional baselines will play a valuable role in determining the structure of emission near the event horizon of Sgr A*.



قيم البحث

اقرأ أيضاً

The Galactic Center black hole Sagittarius A* (Sgr A*) is a prime observing target for the Event Horizon Telescope (EHT), which can resolve the 1.3 mm emission from this source on angular scales comparable to that of the general relativistic shadow. Previous EHT observations have used visibility amplitudes to infer the morphology of the millimeter-wavelength emission. Potentially much richer source information is contained in the phases. We report on 1.3 mm phase information on Sgr A* obtained with the EHT on a total of 13 observing nights over 4 years. Closure phases, the sum of visibility phases along a closed triangle of interferometer baselines, are used because they are robust against phase corruptions introduced by instrumentation and the rapidly variable atmosphere. The median closure phase on a triangle including telescopes in California, Hawaii, and Arizona is nonzero. This result conclusively demonstrates that the millimeter emission is asymmetric on scales of a few Schwarzschild radii and can be used to break 180-degree rotational ambiguities inherent from amplitude data alone. The stability of the sign of the closure phase over most observing nights indicates persistent asymmetry in the image of Sgr A* that is not obscured by refraction due to interstellar electrons along the line of sight.
Black hole event horizons, causally separating the external universe from compact regions of spacetime, are one of the most exotic predictions of General Relativity (GR). Until recently, their compact size has prevented efforts to study them directly . Here we show that recent millimeter and infrared observations of Sagittarius A* (Sgr A*), the supermassive black hole at the center of the Milky Way, all but requires the existence of a horizon. Specifically, we show that these observations limit the luminosity of any putative visible compact emitting region to below 0.4% of Sgr A*s accretion luminosity. Equivalently, this requires the efficiency of converting the gravitational binding energy liberated during accretion into radiation and kinetic outflows to be greater than 99.6%, considerably larger than those implicated in Sgr A*, and therefore inconsistent with the existence of such a visible region. Finally, since we are able to frame this argument entirely in terms of observable quantities, our results apply to all geometric theories of gravity that admit stationary solutions, including the commonly discussed f(R) class of theories.
Global VLBI imaging at millimeter and sub-millimeter wavelength overcomes the opacity barrier of synchrotron self-absorption in AGN and opens the direct view into sub-pc scale regions not accessible before. Since AGN variability is more pronounced at short millimeter wavelength, mm-VLBI can reveal structural changes in very early stages after outbursts. When combined with observations at longer wavelength, global 3mm and 1mm VLBI adds very detailed information. This helps to determine fundamental physical properties at the jet base, and in the vicinity of super-massive black holes at the center of AGN. Here we present new results from multi-frequency mm-VLBI imaging of OJ287 during a major outburst. We also report on a successful 1.3mm VLBI experiment with the APEX telescope in Chile. This observation sets a new record in angular resolution. It also opens the path towards future mm-VLBI with ALMA, which aims at the mapping of the black hole event horizon in nearby galaxies, and the study of the roots of jets in AGN.
The radio emission from Sgr A$^ast$ is thought to be powered by accretion onto a supermassive black hole of $sim! 4times10^6~ rm{M}_odot$ at the Galactic Center. At millimeter wavelengths, Very Long Baseline Interferometry (VLBI) observations can dir ectly resolve the bright innermost accretion region of Sgr A$^ast$. Motivated by the addition of many sensitive, long baselines in the north-south direction, we developed a full VLBI capability at the Large Millimeter Telescope Alfonso Serrano (LMT). We successfully detected Sgr A$^ast$ at 3.5~mm with an array consisting of 6 Very Long Baseline Array telescopes and the LMT. We model the source as an elliptical Gaussian brightness distribution and estimate the scattered size and orientation of the source from closure amplitude and self-calibration analysis, obtaining consistent results between methods and epochs. We then use the known scattering kernel to determine the intrinsic two dimensional source size at 3.5 mm: $(147pm7~murm{as}) times (120pm12~murm{as})$, at position angle $88^circpm7^circ$ east of north. Finally, we detect non-zero closure phases on some baseline triangles, but we show that these are consistent with being introduced by refractive scattering in the interstellar medium and do not require intrinsic source asymmetry to explain.
The general-relativistic magnetohydrodynamical (GRMHD) formulation for black hole-powered jets naturally gives rise to a stagnation surface, wherefrom inflows and outflows along magnetic field lines that thread the black hole event horizon originate. We derive a conservative formulation for the transport of energetic electrons which are initially injected at the stagnation surface and subsequently transported along flow streamlines. With this formulation the energy spectra evolution of the electrons along the flow in the presence of radiative and adiabatic cooling is determined. For flows regulated by synchrotron radiative losses and adiabatic cooling, the effective radio emission region is found to be finite, and geometrically it is more extended along the jet central axis. Moreover, the emission from regions adjacent to the stagnation surface is expected to be the most luminous as this is where the freshly injected energetic electrons concentrate. An observable stagnation surface is thus a strong prediction of the GRMHD jet model with the prescribed non-thermal electron injection. Future millimeter/sub-millimeter (mm/sub-mm) very-long-baseline interferometric (VLBI) observations of supermassive black hole candidates, such as the one at the center of M87, can verify this GRMHD jet model and its associated non-thermal electron injection mechanism.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا