ترغب بنشر مسار تعليمي؟ اضغط هنا

(No) dynamical constraints on the mass of the black hole in two ULXs

103   0   0.0 ( 0 )
 نشر من قبل Tim Roberts
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف T. P. Roberts




اسأل ChatGPT حول البحث

We present the preliminary results of two Gemini campaigns to constrain the mass of the black hole in an ultraluminous X-ray source (ULX) via optical spectroscopy. Pilot studies of the optical counterparts of a number of ULXs revealed two candidates for further detailed study, based on the presence of a broad He II 4686 Angstrom emission line. A sequence of 10 long-slit spectra were obtained for each object, and the velocity shift of the ULX counterpart measured. Although radial velocity variations are observed, they are not sinusoidal, and no mass function is obtained. However, the broad He II line is highly variable on timescales shorter than a day. If associated with the reprocessing of X-rays in the accretion disc, its breadth implies that the disc must be close to face-on.

قيم البحث

اقرأ أيضاً

We consider the current observed ensemble of pulsing ultraluminous X-ray sources (PULXs). We show that all of their observed properties (luminosity, spin period, and spinup rate) are consistent with emission from magnetic neutron stars with fields in the usual range $10^{11} - 10^{13}, {rm G}$, which is collimated (`beamed) by the outflow from an accretion disc supplied with mass at a super-Eddington rate, but ejecting the excess, in the way familiar for other (non-pulsing) ULXs. The observed properties are inconsistent with magnetar-strength fields in all cases. We point out that all proposed pictures of magnetar formation suggest that they are unlikely to be members of binary systems, in agreement with the observation that all confirmed magnetars are single. The presence of magnetars in ULXs is therefore improbable, in line with our conclusions above.
We perform a binary population synthesis calculation incorporating very massive population (Pop.) III stars up to 1500 $M_odot$, and investigate the nature of binary black hole (BBH) mergers. Above the pair-instability mass gap, we find that the typi cal primary black hole (BH) mass is 135-340 $M_odot$. The maximum primary BH mass is as massive as 686 $M_odot$. The BBHs with both of their components above the mass gap have low effective inspiral spin $sim$ 0. So far, no conclusive BBH merger beyond the mass gap has been detected, and the upper limit on the merger rate density is obtained. If the initial mass function (IMF) of Pop. III stars is simply expressed as $xi_m(m) propto m^{-alpha}$ (single power law), we find that $alpha gtrsim 2.8$ is needed in order for the merger rate density not to exceed the upper limit. In the future, the gravitational wave detectors such as Einstein telescope and Pre-DECIGO will observe BBH mergers at high redshift. We suggest that we may be able to impose a stringent limit on the Pop. III IMF by comparing the merger rate density obtained from future observations with that derived theoretically.
Prior to the detection of black holes (BHs) via the gravitational waves (GWs) they generate at merger, the presence of BHs was inferred in X-ray binaries, mostly via dynamical measurements, with masses in the range between $sim 5-20~M_odot$. The LIGO discovery of the first BHs via GWs was surprising in that the two BHs that merged had masses of $35.6^{+4.8}_{-3.0}$ and $30.6^{+3.0}_{-4.4},M_odot$, which are both above the range inferred from X-ray binaries. With 20 BH detections from the O1/O2 runs, the distribution of masses remains generally higher than the X-ray inferred one, while the effective spins are generally lower, suggesting that, at least in part, the GW-detected population might be of dynamical origin rather than produced by the common evolution of field binaries. Here we perform high-resolution N-body simulations of a cluster of isolated BHs with a range of initial mass spectra and upper mass cut-offs, and study the resulting binary mass spectrum resulting from the dynamical interactions. Our clusters have properties similar to those of the massive remnants in an OB association $sim 10 , mathrm{Myr}$ after formation. We perform a likelihood analysis for each of our dynamically-formed binary population against the data from the O1 and O2 LIGO/Virgo runs. We find that an initial mass spectrum $M_{rm BH}propto M^{-2.35}$ with an upper mass cutoff $M_{rm max}sim 50M_odot$ is favored by the data, together with a slight preference for a merger rate that increases with redshift.
At the end of its life, a very massive star is expected to collapse into a black hole. The recent detection of an 85 Msun black hole from the gravitational wave event GW 190521 appears to present a fundamental problem as to how such heavy black holes exist above the approximately 50 Msun pair-instability limit where stars are expected to be blown to pieces with no remnant left. Using MESA, we show that for stellar models with non-extreme assumptions, 90..100 Msun stars at reduced metallicity (Z/Zsun < 0.1) can produce blue supergiant progenitors with core masses sufficiently small to remain below the fundamental pair-instability limit, yet at the same time lose an amount of mass via stellar winds that is small enough to end up in the range of an impossible 85 Msun black hole. The two key points are the proper consideration of core overshooting and stellar wind physics with an improved scaling of mass loss with iron (Fe) contents characteristic for the host galaxy metallicity. Our modelling provides a robust scenario that not only doubles the maximum black hole mass set by pair instability, but also allows us to probe the maximum stellar black hole mass as a function of metallicity and Cosmic time in a physically sound framework.
We present Chandra observations of 12 galaxies that contain supermassive black holes with dynamical mass measurements. Each galaxy was observed for 30 ksec and resulted in a total of 68 point source detections in the target galaxies including superma ssive black hole sources, ultraluminous X-ray sources, and extragalactic X-ray binaries. Based on our fits of the X-ray spectra, we report fluxes, luminosities, Eddington ratios, and slope of the power-law spectrum. Normalized to the Eddington luminosity, the 2--10 keV band X-ray luminosities of the SMBH sources range from $10^{-8}$ to $10^{-6}$, and the power-law slopes are centered at $sim2$ with a slight trend towards steeper (softer) slopes at smaller Eddington fractions, implying a change in the physical processes responsible for their emission at low accretion rates. We find 20 ULX candidates, of which six are likely ($>90%$ chance) to be true ULXs. The most promising ULX candidate has an isotropic luminosity in the 0.3--10 keV band of $1.0_{-0.3}^{+0.6} times 10^{40}$ erg/s.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا