ترغب بنشر مسار تعليمي؟ اضغط هنا

A Chandra Survey of Supermassive Black Holes with Dynamical Mass Measurements

158   0   0.0 ( 0 )
 نشر من قبل Kayhan Gultekin
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present Chandra observations of 12 galaxies that contain supermassive black holes with dynamical mass measurements. Each galaxy was observed for 30 ksec and resulted in a total of 68 point source detections in the target galaxies including supermassive black hole sources, ultraluminous X-ray sources, and extragalactic X-ray binaries. Based on our fits of the X-ray spectra, we report fluxes, luminosities, Eddington ratios, and slope of the power-law spectrum. Normalized to the Eddington luminosity, the 2--10 keV band X-ray luminosities of the SMBH sources range from $10^{-8}$ to $10^{-6}$, and the power-law slopes are centered at $sim2$ with a slight trend towards steeper (softer) slopes at smaller Eddington fractions, implying a change in the physical processes responsible for their emission at low accretion rates. We find 20 ULX candidates, of which six are likely ($>90%$ chance) to be true ULXs. The most promising ULX candidate has an isotropic luminosity in the 0.3--10 keV band of $1.0_{-0.3}^{+0.6} times 10^{40}$ erg/s.

قيم البحث

اقرأ أيضاً

We investigate the evolution of supermassive binary black holes (BBHs) in galaxies with realistic property distributions and the gravitational-wave (GW) radiation from the cosmic population of these BBHs. We incorporate a comprehensive treatment of t he dynamical interactions of the BBHs with their environments by including the effects of galaxy triaxial shapes and inner stellar distributions, and generate a large number of BBH evolution tracks. By combining these BBH evolution tracks, galaxy mass functions, galaxy merger rates, and supermassive black hole-host galaxy relations into our model, we obtain the statistical distributions of surviving BBHs, BBH coalescence rates, the strength of their GW radiation, and the stochastic GW background (GWB) contributed by the cosmic BBH population. About ~1%-3% (or ~10%) of supermassive BHs at nearby galactic centers are expected to be binaries with mass ratio >1/3 (or >1/100). The characteristic strain amplitude of the GWB at frequency 1/yr is estimated to be ~$2.0^{+1.4}_{-0.8}times 10^{-16}$, and the upper bound of its results obtained with the different BH-host galaxy relations can be up to $5.4times 10^{-16}$, which await testing by future experiments (e.g., the Square Kilometer Array, FAST, Next-Generation Very Large Array). The turnover frequency of the GWB spectrum is at ~0.25nHz. The uncertainties on the above estimates and prospects for detecting individual sources are also discussed. The application of the cosmic BBH population to the Laser Interferometer Space Antenna (LISA) band provides a lower limit to the detection rate of BBHs by LISA, ~0.9/yr.
236 - Kayhan Gultekin 2009
Black hole accretion and jet production are areas of intensive study in astrophysics. Recent work has found a relation between radio luminosity, X-ray luminosity, and black hole mass. With the assumption that radio and X-ray luminosity are suitable p roxies for jet power and accretion power, respectively, a broad fundamental connection between accretion and jet production is implied. In an effort to refine these links and enhance their power, we have explored the above relations exclusively among black holes with direct, dynamical mass-measurements. This approach not only eliminates systematic errors incurred through the use of secondary mass measurements, but also effectively restricts the range of distances considered to a volume-limited sample. Further, we have exclusively used archival data from the Chandra X-ray Observatory to best isolate nuclear sources. We find log(L_R) = (4.80 +/- 0.24) + (0.78 +/- 0.27) log(M_BH) + (0.67 +/- 0.12) log(L_X), in broad agreement with prior efforts. Owing to the nature of our sample, the plane can be turned into an effective mass predictor. When the full sample is considered, masses are predicted less accurately than with the well-known M-sigma relation. If obscured AGN are excluded, the plane is potentially a better predictor than other scaling measures.
80 - Ka-Wah Wong 2011
Gas undergoing Bondi accretion onto a supermassive black hole (SMBH) becomes hotter toward smaller radii. We searched for this signature with a Chandra observation of the hot gas in NGC 3115, which optical observations show has a very massive SMBH. O ur analysis suggests that we are resolving, for the first time, the accretion flow within the Bondi radius of an SMBH. We show that the temperature is rising toward the galaxy center as expected in all accretion models in which the black hole is gravitationally capturing the ambient gas. There is no hard central point source that could cause such an apparent rise in temperature. The data support that the Bondi radius is at about 4 arcsec-5 arcsec (188-235 pc), suggesting an SMBH of 2 x 10^9 M_sun that is consistent with the upper end of the optical results. The density profile within the Bondi radius has a power-law index of 1.03^{+0.23}_{-0.21} which is consistent with gas in transition from the ambient medium and the accretion flow. The accretion rate at the Bondi radius is determined to be {dot M}_B = 2.2 x 10^{-2} M_sun yr^{-1}. Thus, the accretion luminosity with 10% radiative efficiency at the Bondi radius (10^{44} erg s^{-1}) is about six orders of magnitude higher than the upper limit of the X-ray luminosity of the nucleus.
Understanding the processes that drive galaxy formation and shape the observed properties of galaxies is one of the most interesting and challenging frontier problems of modern astrophysics. We now know that the evolution of galaxies is critically sh aped by the energy injection from accreting supermassive black holes (SMBHs). However, it is unclear how exactly the physics of this feedback process affects galaxy formation and evolution. In particular, a major challenge is unraveling how the energy released near the SMBHs is distributed over nine orders of magnitude in distance throughout galaxies and their immediate environments. The best place to study the impact of SMBH feedback is in the hot atmospheres of massive galaxies, groups, and galaxy clusters, which host the most massive black holes in the Universe, and where we can directly image the impact of black holes on their surroundings. We identify critical questions and potential measurements that will likely transform our understanding of the physics of SMBH feedback and how it shapes galaxies, through detailed measurements of (i) the thermodynamic and velocity fluctuations in the intracluster medium (ICM) as well as (ii) the composition of the bubbles inflated by SMBHs in the centers of galaxy clusters, and their influence on the cluster gas and galaxy growth, using the next generation of high spectral and spatial resolution X-ray and microwave telescopes.
We study the disk-jet connection in supermassive black holes by investigating the properties of their optical and radio emissions utilizing the SDSS-DR7 and the NVSS catalogs. Our sample contains 7017 radio-loud quasars with detection both at 1.4~GHz and SDSS optical spectrum. Using this radio-loud quasar sample, we investigate the correlation among the jet power ($P_{rm jet}$), the bolometric disk luminosity ($L_{rm disk}$), and the black hole mass ($M_{rm BH}$) in the standard accretion disk regime. We find that the jet powers correlate with the bolometric disk luminosities as $log P_{rm jet} = (0.96pm0.012)log L_{rm disk} + (0.79 pm 0.55)$. This suggests that the jet production efficiency of $eta_{rm jet}simeq1.1_{-0.76}^{+2.6}times10^{-2}$ assuming the disk radiative efficiency of $0.1$ implying low black hole spin parameters and/or low magnetic flux for radio-loud quasars. But it can be also due to dependence of the efficiency on geometrical thickness of the accretion flow which is expected to be small for quasars accreting at the disk Eddington ratios $0.01 lesssim lambda lesssim 0.3$. This low jet production efficiency does not significantly increase even if we set the disk radiative efficiency of 0.3. We also investigate the fundamental plane in our samples among $P_{rm jet}$, $L_{rm disk}$, and $M_{rm BH}$. We could not find a statistically significant fundamental plane for radio-loud quasars in the standard accretion regime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا