ترغب بنشر مسار تعليمي؟ اضغط هنا

Quadrupole Moments of Collective Structures up to Spin $sim$ $65hbar$ in $^{157}$Er and $^{158}$Er: A Challenge for Understanding Triaxiality in Nuclei

84   0   0.0 ( 0 )
 نشر من قبل Xiaofeng Wang
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The transition quadrupole moments, $Q_{rm t}$, of four weakly populated collective bands up to spin $sim$ $65hbar$ in $^{157,158}$Er have been measured to be ${sim}11 {rm eb}$ demonstrating that these sequences are associated with large deformations. However, the data are inconsistent with calculated values from cranked Nilsson-Strutinsky calculations that predict the lowest energy triaxial shape to be associated with rotation about the short principal axis. The data appear to favor either a stable triaxial shape rotating about the intermediate axis or, alternatively, a triaxial shape with larger deformation rotating about the short axis. These new results challenge the present understanding of triaxiality in nuclei.

قيم البحث

اقرأ أيضاً

The transition quadrupole moments, $Q_{t}$, of rotational bands in the neutron-rich, even-mass $^{102-108}$Mo and $^{108-112}$Ru nuclei were measured in the 8 to 16 $hbar $ spin range with the Doppler-shift attenuation method. The nuclei were populat ed as fission fragments from $^{252}$Cf fission. The detector setup consisted of the Gammasphere spectrometer and the HERCULES fast-plastic array. At moderate spin, the $Q_{t}$ moments are found to be reduced with respect to the values near the ground states. Attempts to describe the observations in mean-field-based models, specifically cranked relativistic Hartree-Bogoliubov theory, illustrate the challenge theory faces and the difficulty to infer information on $gamma $ softness and triaxiality from the data.
High-spin states in the odd-odd nucleus $^{168}$Ta have been populated in the $^{120}$Sn($^{51}$V,3n) reaction. Two multi-quasiparticle structures have been extended significantly from spin $sim{20hbar}$ to above ${40hbar}$. As a result, the first ro tational alignment has been fully delineated and a second band crossing has been observed for the first time in this nucleus. Configurations for these strongly-coupled rotational bands are proposed based on signature splitting, $B(M1)/B(E2)$ ratio information, and observed rotation-alignment behavior. Properties of the observed bands in $^{168}$Ta are compared to related structures in the neighboring odd-$Z$, odd-$N$, and odd-odd nuclei and are discussed within the framework of the cranked shell model.
Electric quadrupole (E2) matrix elements provide a measure of nuclear deformation and related collective structure. Ground-state quadrupole moments in particular are known to high precision in many p-shell nuclei. While the experimental electric quad rupole moment only measures the proton distribution, both proton and neutron quadrupole moments are needed to probe proton-neutron asymmetry in the nuclear deformation. We seek insight into the relation between these moments through the ab initio no-core configuration interaction (NCCI), or no-core shell model (NCSM), approach. Converged ab initio calculations for quadrupole moments are particularly challenging, due to sensitivity to long-range behavior of the wave functions. We therefore study more robustly-converged ratios of quadrupole moments: across mirror nuclides, or of proton and neutron quadrupole moments within the same nuclide. In calculations for mirror pairs in the p-shell, we explore how well the predictions for mirror quadrupole moments agree with experiment and how well isospin (mirror) symmetry holds for quadrupole moments across a mirror pair.
A beta-ray detecting nuclear quadrupole resonance system has been developed at NSCL/MSU to measure ground-state electric quadrupole moments of short-lived nuclei produced as fast rare isotope beams. This system enables quick and sequential applicatio n of multiple transition frequencies over a wide range. Fast switching between variable capacitors in resonance circuits ensures sufficient power delivery to the coil in the beta-ray detecting nuclear magnetic resonance technique. The fast switching technique enhances detection efficiency of resonance signals and is especially useful when the polarization and/or production rate of the nucleus of interest are small and when the nuclear spin is large.
The additivity principle of the extreme shell model stipulates that an average value of a one-body operator be equal to the sum of the core contribution and effective contributions of valence (particle or hole) nucleons. For quadrupole moment and ang ular momentum operators, we test this principle for highly and superdeformed rotational bands in the A~130 nuclei. Calculations are done in the self-consistent cranked non-relativistic Hartree-Fock and relativistic Hartree mean-field approaches. Results indicate that the additivity principle is a valid concept that justifies the use of an extreme single-particle model in an unpaired regime typical of high angular momenta.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا