ﻻ يوجد ملخص باللغة العربية
The transition quadrupole moments, $Q_{t}$, of rotational bands in the neutron-rich, even-mass $^{102-108}$Mo and $^{108-112}$Ru nuclei were measured in the 8 to 16 $hbar $ spin range with the Doppler-shift attenuation method. The nuclei were populated as fission fragments from $^{252}$Cf fission. The detector setup consisted of the Gammasphere spectrometer and the HERCULES fast-plastic array. At moderate spin, the $Q_{t}$ moments are found to be reduced with respect to the values near the ground states. Attempts to describe the observations in mean-field-based models, specifically cranked relativistic Hartree-Bogoliubov theory, illustrate the challenge theory faces and the difficulty to infer information on $gamma $ softness and triaxiality from the data.
Electric quadrupole (E2) matrix elements provide a measure of nuclear deformation and related collective structure. Ground-state quadrupole moments in particular are known to high precision in many p-shell nuclei. While the experimental electric quad
We present a comprehensive study on the low-lying states of neutron-rich Er, Yb, Hf, and W isotopes across the $N=126$ shell with a multi-reference covariant density functional theory. Beyond mean-field effects from shape mixing and symmetry restorat
The electric-quadrupole coupling constant of the ground states of the proton drip line nucleus $^{20}$Na($I^{pi}$ = 2$^{+}$, $T_{1/2}$ = 447.9 ms) and the neutron-deficient nucleus $^{21}$Na($I^{pi}$ = 3/2$^{+}$, $T_{1/2}$ = 22.49 s) in a hexagonal Z
A characteristic feature of collective and particle-hole excitations in neutron-rich nuclei is that many of them couple to unbound neutron in continuum single-particle orbits. The continuum random phase approximation (cRPA) is a powerful many-body me
We report on the first in-beam gamma-ray spectroscopy study of the very neutron-rich nucleus 46S. The N=30 isotones 46S and 48Ar were produced in a novel way in two steps that both necessarily involve nucleon exchange and neutron pickup reactions, 9B