ترغب بنشر مسار تعليمي؟ اضغط هنا

The Synoptic All-Sky Infrared (SASIR) Survey

171   0   0.0 ( 0 )
 نشر من قبل Joshua Bloom
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Joshua S. Bloom




اسأل ChatGPT حول البحث

We are proposing to conduct a multicolor, synoptic infrared (IR) imaging survey of the Northern sky with a new, dedicated 6.5-meter telescope at San Pedro Martir (SPM) Observatory. This initiative is being developed in partnership with astronomy institutions in Mexico and the University of California. The 4-year, dedicated survey, planned to begin in 2017, will reach more than 100 times deeper than 2MASS. The Synoptic All-Sky Infrared (SASIR) Survey will reveal the missing sample of faint red dwarf stars in the local solar neighborhood, and the unprecedented sensitivity over such a wide field will result in the discovery of thousands of z ~ 7 quasars (and reaching to z > 10), allowing detailed study (in concert with JWST and Giant Segmented Mirror Telescopes) of the timing and the origin(s) of reionization. As a time-domain survey, SASIR will reveal the dynamic infrared universe, opening new phase space for discovery. Synoptic observations of over 10^6 supernovae and variable stars will provide better distance measures than optical studies alone. SASIR also provides significant synergy with other major Astro2010 facilities, improving the overall scientific return of community investments. Compared to optical-only measurements, IR colors vastly improve photometric redshifts to z ~ 4, enhancing dark energy and dark matter surveys based on weak lensing and baryon oscillations. The wide field and ToO capabilities will enable a connection of the gravitational wave and neutrino universe - with events otherwise poorly localized on the sky - to transient electromagnetic phenomena.



قيم البحث

اقرأ أيضاً

SPHEREx is a proposed NASA MIDEX mission selected for Phase A study. SPHEREx would carry out the first all-sky spectral survey in the near infrared. At the end of its two-year mission, SPHEREx would obtain 0.75-to-5$mu$m spectra of every 6.2 arcsec p ixel on the sky, with spectral resolution R>35 and a 5-$sigma$ sensitivity AB$>$19 per spectral/spatial resolution element. More details concerning SPHEREx are available at http://spherex.caltech.edu. The SPHEREx team has proposed three specific science investigations to be carried out with this unique data set: cosmic inflation, interstellar and circumstellar ices, and the extra-galactic background light. Though these three themes are undoubtedly compelling, they are far from exhausting the scientific output of SPHEREx. Indeed, SPHEREx would create a unique all-sky spectral database including spectra of very large numbers of astronomical and solar system targets, including both extended and diffuse sources. These spectra would enable a wide variety of investigations, and the SPHEREx team is dedicated to making the data available to the community to enable these investigations, which we refer to as Legacy Science. To that end, we have sponsored two workshops for the general scientific community to identify the most interesting Legacy Science themes and to ensure that the SPHEREx data products are responsive to their needs. In February of 2016, some 50 scientists from all fields met in Pasadena to develop these themes and to understand their implications for the SPHEREx mission. The 2016 workshop highlighted many synergies between SPHEREx and other contemporaneous astronomical missions, facilities, and databases. Consequently, in January 2018 we convened a second workshop at the Center for Astrophysics in Cambridge to focus specifically on these synergies. This white paper reports on the results of the 2018 SPHEREx workshop.
We present a far-infrared all-sky atlas from a sensitive all-sky survey using the Japanese $AKARI$ satellite. The survey covers $> 99$% of the sky in four photometric bands centred at 65 $mu$m, 90 $mu$m, 140 $mu$m, and 160 $mu$m with spatial resoluti ons ranging from 1 to 1.5 arcmin. These data provide crucial information for the investigation and characterisation of the properties of dusty material in the Interstellar Medium (ISM), since significant portion of its energy is emitted between $sim$50 and 200 $mu$m. The large-scale distribution of interstellar clouds, their thermal dust temperatures and column densities, can be investigated with the improved spatial resolution compared to earlier all-sky survey observations. In addition to the point source distribution, the large-scale distribution of ISM cirrus emission, and its filamentary structure, are well traced. We have made the first public release of the full-sky data to provide a legacy data set for use by the astronomical community.
We demonstrate the capability of AKARI for mapping diffuse far-infrared emission and achieved reliability of all-sky diffuse map. We have conducted an all-sky survey for more than 94 % of the whole sky during cold phase of AKARI observation in 2006 F eb. -- 2007 Aug. The survey in far-infrared waveband covers 50 um -- 180 um with four bands centered at 65 um, 90 um, 140 um, and 160 um and spatial resolution of 3000 -- 4000 (FWHM).This survey has allowed us to make a revolutionary improvement compared to the IRAS survey that was conducted in 1983 in both spatial resolution and sensitivity after more than a quarter of a century. Additionally, it will provide us the first all-sky survey data with high-spatial resolution beyond 100 um. Considering its extreme importance of the AKARI far-infrared diffuse emission map, we are now investigating carefully the quality of the data for possible release of the archival data. Critical subjects in making image of diffuse emission from detected signal are the transient response and long-term stability of the far-infrared detectors. Quantitative evaluation of these characteristics is the key to achieve sensitivity comparable to or better than that for point sources (< 20 -- 95 [MJy/sr]). We describe current activities and progress that are focused on making high quality all-sky survey images of the diffuse far-infrared emission.
201 - J. Anthony Tyson 2010
Over the past decade, sky surveys such as the Sloan Digital Sky Survey have proven the power of large data sets for answering fundamental astrophysical questions. This observational progress, based on a synergy of advances in telescope construction, detectors, and information technology, has had a dramatic impact on nearly all fields of astronomy, and areas of fundamental physics. The next-generation instruments, and the surveys that will be made with them, will maintain this revolutionary progress. The hardware and computational technical challenges and the exciting science opportunities are attracting scientists and engineers from astronomy, optics, low-light-level detectors, high-energy physics, statistics, and computer science. The history of astronomy has taught us repeatedly that there are surprises whenever we view the sky in a new way. This will be particularly true of discoveries emerging from a new generation of sky surveys. Imaging data from large ground-based active optics telescopes with sufficient etendue can address many scientific missions simultaneously. These new investigations will rely on the statistical precision obtainable with billions of objects. For the first time, the full sky will be surveyed deep and fast, opening a new window on a universe of faint moving and distant exploding objects as well as unraveling the mystery of dark energy.
148 - Daisuke Ishihara 2010
Context : AKARI is the first Japanese astronomical satellite dedicated to infrar ed astronomy. One of the main purposes of AKARI is the all-sky survey performed with six infrared bands between 9 and 200um during the period from 2006 May 6 to 2007 A ugust 28. In this paper, we present the mid-infrared part (9um and 18um b ands) of the survey carried out with one of the on-board instruments, the Infrar ed Camera (IRC). Aims : We present unprecedented observational results of the 9 and 18um AKARI al l-sky survey and detail the operation and data processing leading to the point s ource detection and measurements. Methods : The raw data are processed to produce small images for every scan and point sources candidates, above the 5-sigma noise level per single scan, are der ived. The celestial coordinates and fluxes of the events are determined statisti cally and the reliability of their detections is secured through multiple detect ions of the same source within milli-seconds, hours, and months from each other. Results : The sky coverage is more than 90% for both bands. A total of 877,091 s ources (851,189 for 9um, 195,893 for 18um) are confirmed and included in the cur rent release of the point source catalogue. The detection limit for point source s is 50mJy and 90mJy for the 9um and 18um bands, respectively. The position accu racy is estimated to be better than 2. Uncertainties in the in-flight absolute flux calibration are estimated to be 3% for the 9um band and 4% for the 18um ban d. The coordinates and fluxes of detected sources in this survey are also compar ed with those of the IRAS survey and found to be statistically consistent.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا