ﻻ يوجد ملخص باللغة العربية
We develop the pruned continuous Haar transform and the fast continuous Fourier series, two fast and efficient algorithms for rectilinear polygons. Rectilinear polygons are used in VLSI processes to describe design and mask layouts of integrated circuits. The Fourier representation is at the heart of many of these processes and the Haar transform is expected to play a major role in techniques envisioned to speed up VLSI design. To ensure correct printing of the constantly shrinking transistors and simultaneously handle their increasingly large number, ever more computationally intensive techniques are needed. Therefore, efficient algorithms for the Haar and Fourier transforms are vital. We derive the complexity of both algorithms and compare it to that of discrete transforms traditionally used in VLSI. We find a significant reduction in complexity when the number of vertices of the polygons is small, as is the case in VLSI layouts. This analysis is completed by an implementation and a benchmark of the continuous algorithms and their discrete counterpart. We show that on tested VLSI layouts the pruned continuous Haar transform is 5 to 25 times faster, while the fast continuous Fourier series is 1.5 to 3 times faster.
We introduce an algorithm for the efficient computation of the continuous Haar transform of 2D patterns that can be described by polygons. These patterns are ubiquitous in VLSI processes where they are used to describe design and mask layouts. There,
This work presents a method of computing Voigt functions and their derivatives, to high accuracy, on a uniform grid. It is based on an adaptation of Fourier-transform based convolution. The relative error of the result decreases as the fourth power o
A rectilinear polygon is a polygon whose edges are axis-aligned. Walking counterclockwise on the boundary of such a polygon yields a sequence of left turns and right turns. The number of left turns always equals the number of right turns plus 4. It i
The bottleneck of micromagnetic simulations is the computation of the long-ranged magnetostatic fields. This can be tackled on regular N-node grids with Fast Fourier Transforms in time N logN, whereas the geometrically more versatile finite element m
We implement and test kernel averaging Non-Uniform Fast Fourier Transform (NUFFT) methods to enhance the performance of correlation and covariance estimation on asynchronously sampled event-data using the Malliavin-Mancino Fourier estimator. The meth