ﻻ يوجد ملخص باللغة العربية
We implement and test kernel averaging Non-Uniform Fast Fourier Transform (NUFFT) methods to enhance the performance of correlation and covariance estimation on asynchronously sampled event-data using the Malliavin-Mancino Fourier estimator. The methods are benchmarked for Dirichlet and Fej{e}r Fourier basis kernels. We consider test cases formed from Geometric Brownian motions to replicate synchronous and asynchronous data for benchmarking purposes. We consider three standard averaging kernels to convolve the event-data for synchronisation via over-sampling for use with the Fast Fourier Transform (FFT): the Gaussian kernel, the Kaiser-Bessel kernel, and the exponential of semi-circle kernel. First, this allows us to demonstrate the performance of the estimator with different combinations of basis kernels and averaging kernels. Second, we investigate and compare the impact of the averaging scales explicit in each averaging kernel and its relationship between the time-scale averaging implicit in the Malliavin-Mancino estimator. Third, we demonstrate the relationship between time-scale averaging based on the number of Fourier coefficients used in the estimator to a theoretical model of the Epps effect. We briefly demonstrate the methods on Trade-and-Quote (TAQ) data from the Johannesburg Stock Exchange to make an initial visualisation of the correlation dynamics for various time-scales under market microstructure.
We compare the Malliavin-Mancino and Cuchiero-Teichmann Fourier instantaneous estimators to investigate the impact of the Epps effect arising from asynchrony in the instantaneous estimates. We demonstrate the instantaneous Epps effect under a simulat
The bottleneck of micromagnetic simulations is the computation of the long-ranged magnetostatic fields. This can be tackled on regular N-node grids with Fast Fourier Transforms in time N logN, whereas the geometrically more versatile finite element m
Scalar diffraction calculations such as the angular spectrum method (ASM) and Fresnel diffraction, are widely used in the research fields of optics, X-rays, electron beams, and ultrasonics. It is possible to accelerate the calculation using fast Four
The dynamics of financial markets are driven by the interactions between participants, as well as the trading mechanisms and regulatory frameworks that govern these interactions. Decision-makers would rather not ignore the impact of other participant
Flash Loan attack can grab millions of dollars from decentralized vaults in one single transaction, drawing increasing attention from the Decentralized Finance (DeFi) players. It has also demonstrated an exciting opportunity that a huge wealth could