ترغب بنشر مسار تعليمي؟ اضغط هنا

Chandra Observations of 3C Radio Sources with z<0.3: Nuclei, Diffuse Emission, Jets and Hotspots

206   0   0.0 ( 0 )
 نشر من قبل Francesco Massaro
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on our Chandra Cycle 9 program to observe half of the 60 (unobserved by Chandra) 3C radio sources at z<0.3 for 8 ksec each. Here we give the basic data: the X-ray intensity of the nuclei and any features associated with radio structures such as hot spots and knots in jets. We have measured fluxes in soft, medium and hard bands and are thus able to isolate sources with significant intrinsic column density. For the stronger nuclei, we have applied the standard spectral analysis which provides the best fit values of X-ray spectral index and column density. We find evidence for intrinsic absorption exceeding a column density of 10^{22} cm^{-2} for one third of our sources.



قيم البحث

اقرأ أيضاً

We report on the second round of Chandra observations of the 3C snapshot survey developed to observe the complete sample of 3C radio sources with z<0.3 for 8 ksec each. In the first paper, we illustrated the basic data reduction and analysis procedur es performed for the 30 sources of the 3C sample observed during the Chandra Cycle 9, while here, we present the data for the remaining 27 sources observed during Cycle 12. We measured the X-ray intensity of the nuclei and of any radio hotspots and jet features with associated X-ray emission. X-ray fluxes in three energy bands: soft, medium and hard for all the sources analyzed are also reported. For the stronger nuclei, we also applied the standard spectral analysis which provides the best fit values of X-ray spectral index and absorbing column density. In addition, a detailed analysis of bright X-ray nuclei that could be affected by pileup has been performed. X-ray emission was detected for all the nuclei of the radio sources in our sample except for 3C 319. Amongst the current sample, there are two compact steep spectrum radio sources; two broad line radio galaxies; and one wide angle tail radio galaxy, 3C 89, hosted in a cluster of galaxies clearly visible in our Chandra snapshot observation. In addition, we also detected soft X-ray emission arising from the galaxy cluster surrounding 3C 196.1. Finally, X-ray emission from hotspots have been found in three FR II radio sources and, in the case of 3C 459, we also report the detection of X-ray emission associated with the eastern radio lobe and as well as that cospatial with radio jets in 3C 29 and 3C 402.
52 - F. Massaro 2016
As part of our program to build a complete radio and X-ray database of all the 3CR extragalactic radio sources, we present an analysis of 93 sources for which Chandra archival data are available. Most of these sources have been already published. Her e we provide a uniform re-analysis and present nuclear X-ray fluxes and X-ray emission associated with radio jet knots and hotspots using both publicly available radio images and new radio images that have been constructed from data available in the VLA archive. For about 1/3 of the sources in the selected sample a comparison between the Chandra and the radio observations was not reported in the literature: we find X-ray detections of 2 new radio jet knots and 17 hotspots. We also report the X-ray detection of extended emission from the intergalactic medium of 15 galaxy clusters, two of which were most likely unknown previously.
125 - M. Orienti 2020
We report results on deep Jansky Very Large Array A-configuration observations at 22 GHz of the hotspots of the radio galaxies 3C227 and 3C445. Synchrotron emission in the optical on scales up to a few kpc was reported for the four hotspots. Our VLA observations point out the presence of unresolved regions with upper limit to their linear size of about 100 pc. This is the first time that such compact components in hotspots have been detected in a mini-sample, indicating that they are not a peculiar characteristic of a few individual hotspots. The polarization may reach values up to 70 per cent in compact (about 0.1 kpc scale) regions within the hotspot, indicating a highly ordered magnetic field with size up to a hundred parsecs. On larger scales, the average polarization of the hotspot component is about 30-45 per cent, suggesting the presence of a significant random field component, rather than an ordered magnetic field. This is further supported by the displacement between the peaks in polarized intensity and in total intensity images that is observed in all the four hotspots. The electric vector position angle is not constant, but changes arbitrarily in the central part of the hotspot regions, whereas it is usually perpendicular to the total intensity contours of the outermost edge of the hotspot structure, likely marking the large-scale shock front. The misalignment between X-ray and radio-to-optical emission suggests that the former is tracing the current particle acceleration, whereas the latter marks older shock fronts.
356 - F. Massaro 2018
This paper presents the analysis of Chandra X-ray snapshot observations of a subsample of the extragalactic sources listed in the revised Third Cambridge radio catalog (3CR), previously lacking X-ray observations and thus observed during Chandra Cycl e 15. This data set extends the current Chandra coverage of the 3CR extragalactic catalog up to redshift $z$=1.0. Our sample includes 22 sources consisting of one compact steep spectrum (CSS) source, three quasars (QSOs), and 18 FR,II radio galaxies. As in our previous analyses, here we report the X-ray detections of radio cores and extended structures (i.e., knots, hotspots and lobes) for all sources in the selected sample. We measured their X-ray intensities in three energy ranges: soft (0.5--1 keV), medium (1--2 keV) and hard (2-7 keV) and we also performed standard X-ray spectral analysis for brighter nuclei. All radio nuclei in our sample have an X-ray counterpart. We also discovered X-ray emission associated with the eastern knot of 3CR,154, with radio hotspots in 3CR,41, 3CR,54 and 3CR,225B and with the southern lobe of 3CR,107. Extended X-ray radiation around the nuclei 3CR,293.1 and 3CR,323 on a scale of few tens kpc was also found. X-ray extended emission, potentially arising from the hot gas in the intergalactic medium and/or due to the high energy counterpart of lobes, is detected for 3CR,93, 3CR,154, 3CR,292 and 3CR, 323 over a few hundreds kpc-scale. Finally, this work also presents an update on the state-of-the-art of Chandra and XMM-Newton observations for the entire 3CR sample.
303 - B.P. Miller , W.N. Brandt 2009
We present Chandra observations of the hybrid morphology radio sources 3C 433 and 4C 65.15, two members of the rare class of objects possessing an FR I jet on one side of the core and an FR II lobe on the other. The X-ray spectrum of 3C 433 shows int rinsic absorption (with a column density of N_H=8e22 cm-2), such as is typical of FR II narrow-line radio galaxies. There is excess X-ray emission below 2 keV containing contributions from diffuse soft X-ray emission (likely hot gas with kT~1.2 keV) as well as from the nucleus. The core of 3C 433 is extended in hard X-rays, presumably due to X-ray emission from the inner-jet knot on the FR I side that is apparent in the radio map. It is possible that the X-ray emission from this inner-jet knot is absorbed by the dust known to be present in the host galaxy. The spectrum of 4C 65.15 can be modeled with a simple power law with perhaps mild intrinsic absorption (N_H=1.3e21 cm-2). X-ray emission is detected at the bend in the FR I jet. This X-ray jet emission lies above the extrapolation from the high-frequency radio synchrotron emission and has a spectral slope flatter than alpha_rx, indicating that the jet spectral energy distribution is concave as with other FR II quasar jets. Both 3C 433 and 4C 65.15 have unabsorbed X-ray luminosities, radio luminosities, and optical spectra typically seen in comparable sources with FR II morphologies. Presumably the FR I structure seen on one side in these hybrid sources is generated by a powerful jet interacting with a relatively dense environment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا