ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental Extraction of Secure Correlations from a Noisy Private State

211   0   0.0 ( 0 )
 نشر من قبل Rafal Demkowicz-Dobrzanski
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report experimental generation of a noisy entangled four-photon state that exhibits a separation between the secure key contents and distillable entanglement, a hallmark feature of the recently established quantum theory of private states. The privacy analysis, based on the full tomographic reconstruction of the prepared state, is utilized in a proof-of-principle key generation. The inferiority of distillation-based strategies to extract the key is exposed by an implementation of an entanglement distillation protocol for the produced state.



قيم البحث

اقرأ أيضاً

143 - Vikesh Siddhu , Arvind 2014
Quantum Private Comparison (QPC) allows us to protect private information during its comparison. In the past various three-party quantum protocols have been proposed that claim to work well under noisy conditions. Here we tackle the problem of QPC un der noise. We analyze the EPR-based protocol under depolarizing noise, bit flip and phase flip noise. We show how noise affects the robustness of the EPR-based protocol. We then present a straightforward protocol based on CSS codes to perform QPC which is robust against noise and secure under general attacks.
102 - Dawei Ding , Saikat Guha 2018
Alice is transmitting a private message to Bob across a bosonic wiretap channel with the help of a public feedback channel to which all parties, including the fully-quantum equipped Eve, have completely noiseless access. We find that by altering the model such that Eves copy of the initial round of feedback is corrupted by an iota of noise, one step towards physical relevance, the capacity can be increased dramatically. It is known that the private capacity with respect to the original model for a pure-loss bosonic channel is at most $- log(1-eta)$ bits per mode, where $eta$ is the transmissivity, in the limit of infinite input photon number. This is a very pessimistic result as there is a finite rate limit even with an arbitrarily large number of input photons. We refer to this as a loss limited rate. However, in our altered model we find that we can achieve a rate of $(1/2) log(1 + 4 eta N_S)$ bits per mode, where $N_S$ is the input photon number. This rate diverges with $N_S$, in sharp contrast to the result for the original model. This suggests that physical considerations behind the eavesdropping model should be taken more seriously, as they can create strong dependencies of the achievable rates on the model. For by a seemingly inconsequential weakening of Eve, we obtain a loss-unlimited rate. Our protocol also works verbatim for arbitrary i.i.d. noise (not even necessarily Gaussian) injected by Eve in every round, and even if Eve is given access to copies of the initial transmission and noise. The error probability of the protocol decays super-exponentially with the blocklength.
We investigate how the presence of quantum correlations can influence work extraction in closed quantum systems, establishing a new link between the field of quantum non-equilibrium thermodynamics and the one of quantum information theory. We conside r a bipartite quantum system and we show that it is possible to optimise the process of work extraction, thanks to the correlations between the two parts of the system, by using an appropriate feedback protocol based on the concept of ergotropy. We prove that the maximum gain in the extracted work is related to the existence of quantum correlations between the two parts, quantified by either quantum discord or, for pure states, entanglement. We then illustrate our general findings on a simple physical situation consisting of a qubit system.
We report on an experiment to detect non-classical correlations in a highly mixed state. The correlations are characterized by the quantum discord and are observed using four qubits in a liquid state nuclear magnetic resonance quantum information pro cessor. The state analyzed is the output of a DQC1 computation, whose input is a single quantum bit accompanied by n maximally mixed qubits. This model of computation outperforms the best known classical algorithms, and although it contains vanishing entanglement it is known to have quantum correlations characterized by the quantum discord. This experiment detects non-vanishing quantum discord, ensuring the existence of non-classical correlations as measured by the quantum discord.
Quantum metrology aims to enhance the precision of various measurement tasks by taking advantages of quantum properties. In many scenarios, precision is not the sole target; the acquired information must be protected once it is generated in the sensi ng process. Considering a remote sensing scenario where a local site performs cooperative sensing with a remote site to collect private information at the remote site, the loss of sensing data inevitably causes private information to be revealed. Quantum key distribution is known to be a reliable solution for secure data transmission, however, it fails if an eavesdropper accesses the sensing data generated at a remote site. In this study, we demonstrate that by sharing entanglement between local and remote sites, secure quantum remote sensing can be realized, and the secure level is characterized by asymmetric Fisher information gain. Concretely, only the local site can acquire the estimated parameter accurately with Fisher information approaching 1. In contrast, the accessible Fisher information for an eavesdropper is nearly zero even if he/she obtains the raw sensing data at the remote site. This achievement is primarily due to the nonlocal calibration and steering of the probe state at the remote site. Our results explore one significant advantage of ``quantumness and extend the notion of quantum metrology to the security realm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا