Here we prove that for a smooth projective variety $X$ of arbitrary dimension and for a vector bundle $E$ over $X$, the Harder-Narasimhan filtration of a Frobenius pull back of $E$ is a refinement of the Frobenius pull-back of the Harder-Narasimhan f
iltration of $E$, provided there is a lower bound on the characteristic $p$ (in terms of rank of $E$ and the slope of the destabilising sheaf of the cotangent bundle of $X$). We also recall some examples, due to Raynaud and Monsky,to show that some lower bound on $p$ is necessary. We further prove an analogue of this result for principal $G$-bundles over $X$. We also give a bound on the instability degree of the Frobenius pull back of $E$ in terms of the instability degree of $E$ and well defined invariants ot $X$ and $E$.
In this note, we introduce the notion of a singular principal G-bundle, associated to a reductive algebraic group G over the complex numbers by means of a faithful representation $varrho^pcolon Glra SL(V)$. This concept is meant to provide an analogo
n to the notion of a torsion free sheaf as a generalization of the notion of a vector bundle. We will construct moduli spaces for these singular principal bundles which compactify the moduli spaces of stable principal bundles.
We investigate principal bundles over a root stack. In case of dimension one, we generalize the criterion of Weil and Atiyah for a principal bundle to have an algebraic connection.
We show some of the conjectures of Pappas and Rapoport concerning the moduli stack of $mathcal{G}$-torsors on a curve C, where $mathcal{G}$ is a semisimple Bruhat-Tits group scheme on C. In particular we prove the analog of the uniformization theorem
of Drinfeld-Simpson in this setting. Furthermore we apply this to compute the connected components of these moduli stacks and to calculate the Picard group of the stack of torsors in case $mathcal{G}$ is simply connected.
In this paper, we obtain parametrizations of the moduli space of principal bundles over a compact Riemann surface using spaces of Hecke modifications in several cases. We begin with a discussion of Hecke modifications for principal bundles and give c
onstructions of universal Hecke modifications of a fixed bundle of fixed type. This is followed by an overview of the construction of the wonderful, or De Concini--Procesi, compactification of a semi-simple algebraic group of adjoint type. The compactification plays an important role in the deformation theory used in constructing the parametrizations. A general outline to construct parametrizations is given and verifications for specific structure groups are carried out.