ﻻ يوجد ملخص باللغة العربية
In this note, we introduce the notion of a singular principal G-bundle, associated to a reductive algebraic group G over the complex numbers by means of a faithful representation $varrho^pcolon Glra SL(V)$. This concept is meant to provide an analogon to the notion of a torsion free sheaf as a generalization of the notion of a vector bundle. We will construct moduli spaces for these singular principal bundles which compactify the moduli spaces of stable principal bundles.
In this article, we solve the problem of constructing moduli spaces of semistable principal bundles (and singul
It is a longstanding problem in Algebraic Geometry to determine whether the syzygy bundle $E_{d_1,...,d_n}$ on $mathbb{P}^N$ defined as the kernel of a general epimorphism [phi:mathcal{O}(-d_1)oplus...oplusmathcal{O}(-d_n) tomathcal{O}] is (semi)stab
In this paper, we obtain parametrizations of the moduli space of principal bundles over a compact Riemann surface using spaces of Hecke modifications in several cases. We begin with a discussion of Hecke modifications for principal bundles and give c
Studying degenerations of moduli spaces of semistable principal bundles on smooth curves leads to the problem of constructing and studying moduli spaces on singular curves. In this note, we will see that the moduli spaces of $delta$-semistable pseudo
Let $X$ be a smooth projective curve over the complex numbers. To every representation $rhocolon GL(r)lra GL(V)$ of the complex general linear group on the finite dimensional complex vector space $V$ which satisfies the assumption that there be an in