ترغب بنشر مسار تعليمي؟ اضغط هنا

Search for stabilizing effects of $bm{Z=82}$ shell closure against fission

71   0   0.0 ( 0 )
 نشر من قبل Subir Nath
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Presence of closed proton and/or neutron shells causes deviation from macroscopic properties of nuclei which are understood in terms of the liquid drop model. It is important to investigate experimentally the stabilizing effects of shell closure, if any, against fission. This work aims to investigate probable effects of proton shell ($Z = 82$) closure in the compound nucleus, in enhancing survival probability of the evaporation residues formed in heavy ion-induced fusion-fission reactions. Evaporation residue cross sections have been measured for the reactions $^{19}$F+$^{180}$Hf, $^{19}$F+$^{181}$Ta and $^{19}$F+$^{182}$W from $simeq9%$ below to $simeq42%$ above the Coulomb barrier, leading to formation of compound nuclei with same number of neutrons ($N = 118$) but different number of protons across $Z = 82$. Measured excitation functions have been compared with statistical model calculation, in which reduced dissipation coefficient is the only adjustable parameter. Evaporation residue cross section, normalized by capture cross section, is found to decrease gradually with increasing fissility of the compound nucleus. Measured evaporation residue cross sections require inclusion of nuclear viscosity in the model calculations. Reduced dissipation coefficient in the range of 1textendash3 $times$ $10^{21}$ s$^{-1}$ reproduces the data quite well. No abrupt enhancement of evaporation residue cross sections has been observed in the reaction forming compound nucleus with $Z = 82$. Thus, this work does not find enhanced stabilizing effects of $Z = 82$ shell closure against fission in the compound nucleus. One may attempt to measure cross sections of individual exit channels for further confirmation of our observation.

قيم البحث

اقرأ أيضاً

We probe the $N=82$ nuclear shell closure by mass measurements of neutron-rich cadmium isotopes with the ISOLTRAP spectrometer at ISOLDE-CERN. The new mass of $^{132}$Cd offers the first value of the $N=82$, two-neutron shell gap below $Z=50$ and con firms the phenomenon of mutually enhanced magicity at $^{132}$Sn. Using the recently implemented phase-imaging ion-cyclotron-resonance method, the ordering of the low-lying isomers in $^{129}$Cd and their energies are determined. The new experimental findings are used to test large-scale shell-model, mean-field and beyond-mean-field calculations, as well as the ab initio valence-space in-medium similarity renormalization group.
Mass distributions of the fragments in the fission of $^{206}$Po and the N=126 neutron shell closed nucleus $^{210}$Po have been measured. No significant deviation of mass distributions has been found between $^{206}$Po and $^{210}$Po, indicating the absence of shell correction at the saddle point in both the nuclei, contrary to the reported angular anisotropy and pre-scission neutron multiplicity results. This new result provides benchmark data to test the new fission dynamical models to study the effect of shell correction on the potential energy surface at saddle point.
The atomic numbers and the masses of fragments formed in quasi-fission reactions have been simultaneously measured at scission in 48 Ti + 238 U reactions at a laboratory energy of 286 MeV. The atomic numbers were determined from measured characterist ic fluorescence X-rays whereas the masses were obtained from the emission angles and times of flight of the two emerging fragments. For the first time, thanks to this full identification of the quasi-fission fragments on a broad angular range, the important role of the proton shell closure at Z = 82 is evidenced by the associated maximum production yield, a maximum predicted by time dependent Hartree-Fock calculations. This new experimental approach gives now access to precise studies of the time dependence of the N/Z (neutron over proton ratios of the fragments) evolution in quasi-fission reactions.
89 - O. Sorlin 2012
The evolution of the N=28 shell closure is investigated far from stability. Using the latest results obtained from various experimental techniques, we discuss the main properties of the N=28 isotones, as well as those of the N=27 and N=29 isotones. E xperimental results are confronted to various theoretical predictions. These studies pinpoint the effects of several terms of the nucleon-nucleon interaction, such as the central, the spin-orbit, the tensor and the three-body force components, to account for the modification of the N=28 shell gap and spin-orbit splittings. Analogies between the evolution of the N=28 shell closure and other magic numbers originating from the spin-orbit interaction are proposed (N=14,50, 82 and 90). More generally, questions related to the evolution of nuclear forces towards the drip-line, in bubble nuclei, and for nuclei involved in the r-process nucleosynthesis are proposed and discussed.
The recently confirmed neutron-shell closure at N = 32 has been investigated for the first time below the magic proton number Z = 20 with mass measurements of the exotic isotopes 52,53K, the latter being the shortest-lived nuclide investigated at the online mass spectrometer ISOLTRAP. The resulting two-neutron separation energies reveal a 3 MeV shell gap at N = 32, slightly lower than for 52Ca, highlighting the doubly-magic nature of this nuclide. Skyrme-Hartree-Fock-Boguliubov and ab initio Gorkov-Green function calculations are challenged by the new measurements but reproduce qualitatively the observed shell effect.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا