ترغب بنشر مسار تعليمي؟ اضغط هنا

Establishing Alpha Oph as a Prototype Rotator: Improved Astrometric Orbit

166   0   0.0 ( 0 )
 نشر من قبل Sasha Hinkley
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Sasha Hinkley




اسأل ChatGPT حول البحث

The nearby star Alpha Oph (Ras Alhague) is a rapidly rotating A5IV star spinning at ~89% of its breakup velocity. This system has been imaged extensively by interferometric techniques, giving a precise geometric model of the stars oblateness and the resulting temperature variation on the stellar surface. Fortuitously, Alpha Oph has a previously known stellar companion, and characterization of the orbit provides an independent, dynamically-based check of both the host star and the companion mass. Such measurements are crucial to constrain models of such rapidly rotating stars. In this study, we combine eight years of Adaptive Optics imaging data from the Palomar, AEOS, and CFHT telescopes to derive an improved, astrometric characterization of the companion orbit. We also use photometry from these observations to derive a model-based estimate of the companion mass. A fit was performed on the photocenter motion of this system to extract a component mass ratio. We find masses of 2.40^{0.23}_{0.37} solar masses and 0.85^{0.06}_{0.04} solar masses for Alpha Oph A and Alpha Oph B, respectively. Previous orbital studies of this system found a mass too high for this system, inconsistent with stellar evolutionary calculations. Our measurements of the host star mass are more consistent with these evolutionary calculations, but with slightly higher uncertainties. In addition to the dynamically-derived masses, we use IJHK photometry to derive a model-based mass for Alpha Oph B, of 0.77 +/- 0.05 solar masses marginally consistent with the dynamical masses derived from our orbit. Our model fits predict a periastron passage on 2012 April 19, with the two components having a ~50 milliarcsec separation from March to May 2012. A modest amount of interferometric and radial velocity data during this period could provide a mass determination of this star at the few percent level.



قيم البحث

اقرأ أيضاً

98 - Tyler Gardner 2021
Alpha Ophiuchi (Rasalhague) is a nearby rapidly rotating A5IV star which has been imaged by infrared interferometry. $alpha$ Oph is also part of a known binary system, with a companion semi-major axis of $sim$430 milli-arcseconds and high eccentricit y of 0.92. The binary companion provides the unique opportunity to measure the dynamical mass to compare with the results of rapid rotator evolution models. The lack of data near periastron passage limited the precision of mass measurements in previous work. We add new interferometric data from the MIRC combiner at the CHARA Array as well as new Keck adaptive optics imaging data with NIRC2, including epochs taken near periastron passage. We also obtained new radial velocities of both components at Fairborn Observatory. Our updated combined orbit for the system drastically reduces the errors of the orbital elements, and allows for precise measurement of the primary star mass at the few percent level. Our resulting primary star mass of $2.20pm0.06$ M$_{odot}$ agrees well with predictions from imaging results, and matches evolution models with rotation when plotting on an HR diagram. However, to truly distinguish between non-rotating and rotating evolution models for this system we need $sim$1% errors on mass, which might be achieved once the distance is known to higher precision in future Gaia releases. We find that the secondary mass of $0.824pm0.023$ M$_{odot}$ is slightly under-luminous when compared to stellar evolution models. We show that $alpha$ Oph is a useful reference source for programs that need $pm$1 milli-arcsecond astrometry.
Understanding the physical process responsible for the transport of energy in the core of $alpha$ Centauri A is of the utmost importance if this star is to be used in the calibration of stellar model physics. Adoption of different parallax measuremen ts available in the literature results in differences in the interferometric radius constraints used in stellar modelling. Further, this is at the origin of the different dynamical mass measurements reported for this star. With the goal of reproducing the revised dynamical mass derived by Pourbaix & Boffin, we modelled the star using two stellar grids varying in the adopted nuclear reaction rates. Asteroseismic and spectroscopic observables were complemented with different interferometric radius constraints during the optimisation procedure. Our findings show that best-fit models reproducing the revised dynamical mass favour the existence of a convective core ($gtrsim$ 70% of best-fit models), a result that is robust against changes to the model physics. If this mass is accurate, then $alpha$ Centauri A may be used to calibrate stellar model parameters in the presence of a convective core.
We report a multisite photometric campaign for the Beta Cep stars V2052 Oph and V986 Oph. 670 hours of high-quality differential photoelectric Stromgren, Johnson and Geneva time-series photometry were obtained with eight telescopes on five continents during 182 nights. Frequency analyses of the V2052 Oph data enabled the detection of three pulsation frequencies, the first harmonic of the strongest signal, and the rotation frequency with its first harmonic. Pulsational mode identification from analysing the colour amplitude ratios confirms the dominant mode as being radial, whereas the other two oscillations are most likely l=4. Combining seismic constraints on the inclination of the rotation axis with published magnetic field analyses we conclude that the radial mode must be the fundamental. The rotational light modulation is in phase with published spectroscopic variability, and consistent with an oblique rotator for which both magnetic poles pass through the line of sight. The inclination of the rotation axis is 54o <i< 58o and the magnetic obliquity 58o <beta< 66o. The possibility that V2052 Oph has a magnetically confined wind is discussed. The photometric amplitudes of the single oscillation of V986 Oph are most consistent with an l=3 mode, but this identification is uncertain. Additional intrinsic, apparently temporally incoherent, light variations of V986 Oph are reported. Different interpretations thereof cannot be distinguished at this point, but this kind of variability appears to be present in many OB stars. The prospects of obtaining asteroseismic information for more rapidly rotating Beta Cep stars, which appear to prefer modes of higher l, are briefly discussed.
The GRAVITY instrument on the ESO VLTI pioneers the field of high-precision near-infrared interferometry by providing astrometry at the $10 - 100,mu$as level. Measurements at such high precision crucially depend on the control of systematic effects. Here, we investigate how aberrations introduced by small optical imperfections along the path from the telescope to the detector affect the astrometry. We develop an analytical model that describes the impact of such aberrations on the measurement of complex visibilities. Our formalism accounts for pupil-plane and focal-plane aberrations, as well as for the interplay between static and turbulent aberrations, and successfully reproduces calibration measurements of a binary star. The Galactic Center observations with GRAVITY in 2017 and 2018, when both Sgr A* and the star S2 were targeted in a single fiber pointing, are affected by these aberrations at a level of less than 0.5 mas. Removal of these effects brings the measurement in harmony with the dual beam observations of 2019 and 2020, which are not affected by these aberrations. This also resolves the small systematic discrepancies between the derived distance $R_0$ to the Galactic Center reported previously.
Magnetic massive and intermediate-mass stars constitute a separate population whose properties are still not fully understood. Increasing the sample of known objects of this type would help answer fundamental questions regarding the origins and chara cteristics of their magnetic fields. The MOBSTER Collaboration seeks to identify candidate magnetic A, B and O stars and explore the incidence and origins of photometric rotational modulation using high-precision photometry from the Transiting Exoplanet Survey Satellite (textit{TESS}) mission. In this contribution, we present an overview of our methods and planned targeted spectropolarimetric follow-up surveys.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا