ﻻ يوجد ملخص باللغة العربية
We simulate a Kepler-like observation of a theoretical exoplanet population and we show that the observed orbital period distribution of the Kepler giant planet candidates is best matched by an average stellar specific dissipation function Q_* in the interval 10^6 ~< Q_* ~< 10^7. In that situation, the few super-Earths that are driven to orbital periods P < 1 day by dynamical interactions in multiple-planet systems will survive tidal disruption for a significant fraction of the main-sequence lifetimes of their stellar hosts. Consequently, though these very-hot super-Earths are not characteristic of the overall super-Earth population, their substantial transit probability implies that they should be significant contributors to the full super-Earth population uncovered by Kepler. As a result, the CoRoT-7 system may be the first representative of a population of very-hot super-Earths that we suggest should be found in multiple-planet systems preferentially orbiting the least-dissipative stellar hosts in the Kepler sample.
We present a catalog of 11 multi-planet systems from Campaigns 1 and 2 of the K2 mission. We report the sizes and orbits of 26 planets split between seven 2-planet systems and four 3-planet systems. These planets stem from a systematic search of the
Hot super-Earths likely possess minimal atmospheres established through vapor saturation equilibrium with the ground. We solve the hydrodynamics of these tenuous atmospheres at the surface of Corot-7b, Kepler 10b and 55 Cnc-e, including idealized tre
Simulations predict that hot super-Earth sized exoplanets can have their envelopes stripped by photo-evaporation, which would present itself as a lack of these exoplanets. However, this absence in the exoplanet population has escaped a firm detection
In this work, we hunt for the best places to find exo-Earths in the currently known exoplanet population. While it is still unclear whether Jupiter had a beneficial or detrimental effect on the creation of the right environment for a habitable Earth
The nearest exoplanets to the Sun are our best possibilities for detailed characterization. We report the discovery of a compact multi-planet system of super-Earths orbiting the nearby red dwarf GJ 887, using radial velocity measurements. The planets