ﻻ يوجد ملخص باللغة العربية
Atomic nuclei are complex, quantum many-body systems whose structure manifests itself through intrinsic quantum states associated with different excitation modes or degrees of freedom. Collective modes (vibration and/or rotation) dominate at low energy (near the ground-state). The associated states are usually employed, within a truncated model space, as a basis in (coherent) coupled channels approaches to low-energy reaction dynamics. However, excluded states can be essential, and their effects on the open (nuclear) system dynamics are usually treated through complex potentials. Is this a complete description of open system dynamics? Does it include effects of quantum decoherence? Can decoherence be manifested in reaction observables? In this contribution, I discuss these issues and the main ideas of a coupled-channels density-matrix approach that makes it possible to quantify the role and importance of quantum decoherence in low-energy nuclear reaction dynamics. Topical applications, which refer to understanding the astrophysically important collision $^{12}$C + $^{12}$C and achieving a unified quantum dynamical description of relevant reaction processes of weakly-bound nuclei, are highlighted.
The coupled-channels density-matrix technique for nuclear reaction dynamics, which is based on the Liouville-von Neumann equation with Lindblad dissipative terms, is developed with the inclusion of full angular momentum couplings. It allows a quantit
Using a random-matrix approach and Monte-Carlo simulations, we generate scattering matrices and cross sections for compound-nucleus reactions. In the absence of direct reactions we compare the average cross sections with the analytic solution given b
Using many-body perturbation theory and coupled-cluster theory, we calculate the ground-state energy of He-4 and O-16. We perform these calculations using a no-core G-matrix interaction derived from a realistic nucleon-nucleon potential. Our calculat
Background: Near-barrier fusion can be strongly affected by the coupling between relative motion and internal degrees of freedom of the collision partners. The time-dependent Hartree-Fock (TDHF) theory and the coupled-channels (CC) method are standar
We introduce a finite-range pseudopotential built as an expansion in derivatives up to next-to-next-to-next-to-leading order (N$^3$LO) and we calculate the corresponding nonlocal energy density functional (EDF). The coupling constants of the nonlocal