ﻻ يوجد ملخص باللغة العربية
We present a systematic study of various forms of renormalization that can be applied in the calculation of the self-energy of the Hubbard model within the T-matrix approximation. We compare the exact solutions of the attractive and repulsive Hubbard models, for linear chains of lengths up to eight sites, with all possible taxonomies of the T-matrix approximation. For the attractive Hubbard model, the success of a minimally self-consistent theory found earlier in the atomic limit (Phys. Rev. B 71, 155111 (2005)) is not maintained for finite clusters unless one is in the very strong correlation limit. For the repulsive model, in the weak correlation limit at low electronic densities -- that is, where one would expect a self-consistent T-matrix theory to be adequate -- we find the fully renormalized theory to be most successful. In our studies we employ a modified Hubbard interaction that eliminates all Hartree diagrams, an idea which was proposed earlier (Phys. Rev. B 63, 035104 (2000)).
We show that the numerically exact bold-line diagrammatic theory for the $2d$ Hubbard model exhibits a non-Fermi-liquid (NFL) strange metal state, which is connected to the SYK NFL in the strong-interaction limit. The solution for the doped system fe
Using a self-consistent Hartree-Fock approximation we investigate the relative stability of various stripe phases in the extended $t$-$t$-$U$ Hubbard model. One finds that a negative ratio of next- to nearest-neighbor hopping $t/t<0$ expells holes fr
We investigate melting of stripe phases in the overdoped regime x>0.3 of the two-dimensional t-t-U Hubbard model, using a spin rotation invariant form of the slave boson representation. We show that the spin and charge order disappear simultaneously,
We calculate the Landau interaction function f(k,k) for the two-dimensional t-t Hubbard model on the square lattice using second and higher order perturbation theory. Within the Landau-Fermi liquid framework we discuss the behavior of spin and charge
In this work we introduce the Dual Boson Diagrammatic Monte Carlo technique for strongly interacting electronic systems. This method combines the strength of dynamical mean-filed theory for non-perturbative description of local correlations with the