ترغب بنشر مسار تعليمي؟ اضغط هنا

WINGS-SPE II: A catalog of stellar ages and star formation histories, stellar masses and dust extinction values for local clusters galaxies

55   0   0.0 ( 0 )
 نشر من قبل Jacopo Fritz
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The WIde-field Nearby Galaxy clusters Survey (WINGS) is a project whose primary goal is to study the galaxy populations in clusters in the local universe (z<0.07) and of the influence of environment on their stellar populations. This survey has provided the astronomical community with a high quality set of photometric and spectroscopic data for 77 and 48 nearby galaxy clusters, respectively. In this paper we present the catalog containing the properties of galaxies observed by the WINGS SPEctroscopic (WINGS-SPE) survey, which were derived using stellar populations synthesis modelling approach. We also check the consistency of our results with other data in the literature. Using a spectrophotometric model that reproduces the main features of observed spectra by summing the theoretical spectra of simple stellar populations of different ages, we derive the stellar masses, star formation histories, average age and dust attenuation of galaxies in our sample. ~5300 spectra were analyzed with spectrophotometric techniques, and this allowed us to derive the star formation history, stellar masses and ages, and extinction for the WINGS spectroscopic sample that we present in this paper. The comparison with the total mass values of the same galaxies derived by other authors based on SDSS data, confirms the reliability of the adopted methods and data.



قيم البحث

اقرأ أيضاً

134 - James Schombert 2013
The luminosities, colors and Halpha emission for 429 HII regions in 54 LSB galaxies are presented. While the number of HII regions per galaxy is lower in LSB galaxies compared to star-forming irregulars and spirals, there is no indication that the si ze or luminosity function of HII regions differs from other galaxy types. The lower number of HII regions per galaxy is consistent with their lower total star formation rates. The fraction of total $L_{Halpha}$ contributed by HII regions varies from 10 to 90% in LSB galaxies (the rest of the H$alpha$ emission being associated with a diffuse component) with no correlation with galaxy stellar or gas mass. Bright HII regions have bluer colors, similar to the trend in spirals; their number and luminosities are consistent with the hypothesis that they are produced by the same HII luminosity function as spirals. Comparison with stellar population models indicates that the brightest HII regions in LSB galaxies range in cluster mass from a few $10^3 M_{sun}$ (e.g., $rho$ Oph) to globular cluster sized systems (e.g., 30 Dor) and that their ages are consistent with clusters from 2 to 15 Myrs old. The faintest HII regions are comparable to those in the LMC powered by a single O or B star. Thus, star formation in LSB galaxies covers the full range of stellar cluster mass.
We present the integrated properties of the stellar populations in the Universidad Complutense de Madrid Survey galaxies. Applying the techniques described in the first paper of this series, we derive ages, burst masses and metallicities of the newly -formed stars in our sample galaxies. The population of young stars is responsible for the Halpha emission used to detect the objects in the UCM Survey. We also infer total stellar masses and star formation rates in a consistent way taking into account the evolutionary history of each galaxy. We find that an average UCM galaxy has a total stellar mass of ~1E10 Msun, of which about 5% has been formed in an instantaneous burst occurred about 5 Myr ago, and sub-solar metallicity. Less than 10% of the sample shows massive starbursts involving more than half of the total mass of the galaxy. Several correlations are found among the derived properties. The burst strength is correlated with the extinction and with the integrated optical colours for galaxies with low obscuration. The current star formation rate is correlated with the gas content. A stellar mass-metallicity relation is also found. Our analysis indicates that the UCM Survey galaxies span a broad range in properties between those of galaxies completely dominated by current/recent star formation and those of normal quiescent spirals. We also find evidence indicating that star-formation in the local universe is dominated by galaxies considerably less massive than L*.
We study the physical properties of 216 z ~ 2.1 LAEs discovered in an ultra-deep narrow-band MUSYC image of the ECDF-S. We fit their stacked Spectral Energy Distribution (SED) using Charlot & Bruzual templates. We consider star formation histories pa rametrized by the e-folding time parameter tau, allowing for exponentially decreasing (tau>0), exponentially increasing (tau<0), and constant star formation rates. These LAEs are characterized by best fit parameters and 68% confidence intervals of log(M_*/M_sun)=8.6[8.4-9.1], E(B-V)=0.22[0.00-0.31], tau=-0.02[(-4)-18] Gyr, and age_ SF=0.018[0.009-3] Gyr. Thus, we obtain robust measurements of low stellar mass and dust content, but we cannot place meaningful constraints on the age or star formation history of the LAEs. We also calculate the instantaneous SFR to be 35[0.003-170] M_sun/yr, with its average over the last 100 Myr before observation giving <SFR>_100=4[2-30] M_sun/yr. When we compare the results for the same star formation history, LAEs at z~2.1 are dustier and show higher instantaneous SFRs than z~3.1 LAEs, while the observed stellar masses of the two samples seem consistent. LAEs appear to occupy the low-mass end of the distribution of star forming galaxies at z~2. We perform SED fitting on several sub-samples selected based on photometric properties and find that LAE sub-samples at z~2.1 exhibit heterogeneous properties. The IRAC-bright, UV-bright and red LAEs have the largest stellar mass and dust reddening. The UV-faint, IRAC-faint, and high equivalent width LAE sub-samples appear less massive (<10^9 M_sun) and less dusty, with E(B-V) consistent with zero.
Establishing the stellar masses (M*), and hence specific star-formation rates (sSFRs) of submillimetre galaxies (SMGs) is crucial for determining their role in the cosmic galaxy/star formation. However, there is as yet no consensus over the typical M * of SMGs. Specifically, even for the same set of SMGs, the reported average M* have ranged over an order of magnitude, from ~5x10^10 Mo to ~5x10^11 Mo. Here we study how different methods of analysis can lead to such widely varying results. We find that, contrary to recent claims in the literature, potential contamination of IRAC 3-8 um photometry from hot dust associated with an active nucleus is not the origin of the published discrepancies in derived M*. Instead, we expose in detail how inferred M* depends on assumptions made in the photometric fitting, and quantify the individual and cumulative effects of different choices of initial mass function, different brands of evolutionary synthesis models, and different forms of assumed star-formation history. We review current observational evidence for and against these alternatives as well as clues from the hydrodynamical simulations, and conclude that, for the most justifiable choices of these model inputs, the average M* of SMGs is ~2x10^11 Mo. We also confirm that this number is perfectly reasonable in the light of the latest measurements of their dynamical masses, and the evolving M* function of the overall galaxy population. M* of this order imply that the average sSFR of SMGs is comparable to that of other star-forming galaxies at z>2, at 2-3 Gyr^-1. This supports the view that, while rare outliers may be found at any M*, most SMGs simply form the top end of the main-sequence of star-forming galaxies at these redshifts. Conversely, this argues strongly against the viewpoint that SMGs are extreme pathological objects, of little relevance in the cosmic history of star-formation.
The majority of spiral and elliptical galaxies in the Universe host very dense and compact stellar systems at their centres known as nuclear star clusters (NSCs). In this work we study the stellar populations and star formation histories (SFH) of the NSCs of six nearby galaxies with stellar masses ranging between $2$ and $8times10^9~{rm M_{odot}}$ (four late-type spirals and two early-types) with high resolution spectroscopy. Our observations are taken with the X-Shooter spectrograph at the VLT. We make use of an empirical simple stellar population (SSP) model grid to fit composite stellar populations to the data and recover the SFHs of the nuclei. We find that the nuclei of all late-type galaxies experienced a prolonged SFH, while the NSCs of the two early-types are consistent with SSPs. The NSCs in the late-type galaxies sample appear to have formed a significant fraction of their stellar mass already more than $10$ Gyr ago, while the NSCs in the two early-type galaxies are surprisingly younger. Stars younger than $100$ Myr are present in at least two nuclei: NGC 247 and NGC 7793, with some evidence for young star formation in NGC 300s NSC. The NSCs of the spirals NGC 247 and NGC 300 are consistent with prolonged in situ star formation with a gradual metallicity enrichment from $sim-1.5$ dex more than $10$ Gyr ago, reaching super-Solar values few hundred Myr ago. NGC 3621 appears to be very metal rich already in the early Universe and NGC 7793 presents us with a very complex SFH, likely dominated by merging of various massive star clusters coming from different environments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا