ترغب بنشر مسار تعليمي؟ اضغط هنا

Cluster morphologies and model-independent Y_SZ estimates from Bolocam Sunyaev-Zeldovich images

218   0   0.0 ( 0 )
 نشر من قبل Jack Sayers
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present initial results from our ongoing program to image the Sunyaev-Zeldovich (SZ) effect in galaxy clusters at 143 GHz using Bolocam; five clusters and one blank field are described in this manuscript. The images have a resolution of 58 arcsec and a radius of 6-7 arcmin, which is approximately r500 - 2r500 for these clusters. The beam-smoothed RMS is ~10 uK_CMB in these images; with this sensitivity we are able to detect SZ signal to beyond r500 in binned radial profiles. We have fit our images to beta and Nagai models, fixing spherical symmetry or allowing for ellipticity in the plane of the sky, and we find that the best-fit parameter values are in general consistent with those obtained from other X-ray and SZ data. Our data show no clear preference for the Nagai model or the beta model due to the limited spatial dynamic range of our images. However, our data show a definitive preference for elliptical models over spherical models. The weighted mean ellipticity of the five clusters is 0.27 +- 0.03, consistent with results from X-ray data. Additionally, we obtain model-independent estimates of Y500, the integrated SZ y-parameter over the cluster face to a radius of r500, with systematics-dominated uncertainties of ~10%. Our Y500 values, which are free from the biases associated with model-derived Y500 values, scale with cluster mass in a way that is consistent with both self-similar predictions and expectations of a 10% intrinsic scatter.



قيم البحث

اقرأ أيضاً

We describe Sunyaev-Zeldovich (SZ) effect measurements and analysis of the intracluster medium (ICM) pressure profiles of a set of 45 massive galaxy clusters imaged using Bolocam at the Caltech Submillimeter Observatory. We have used masses determine d from Chandra X-ray observations to scale each clusters profile by the overdensity radius R500 and the mass-and-redshift-dependent normalization factor P500. We deproject the average pressure profile of our sample into 13 logarithmically spaced radial bins between 0.07R500 and 3.5R500. We find that a generalized Navarro, Frenk, and White (gNFW) profile describes our data with sufficient goodness-of-fit and best-fit parameters (C500, alpha, beta, gamma, P0 = 1.18, 0.86, 3.67, 0.67, 4.29). We also use the X-ray data to define cool-core and disturbed subsamples of clusters, and we constrain the average pressure profiles of each of these subsamples. We find that given the precision of our data the average pressure profiles of disturbed and cool-core clusters are consistent with one another at R>~0.15R500, with cool-core systems showing indications of higher pressure at R<~0.15R500. In addition, for the first time, we place simultaneous constraints on the mass scaling of cluster pressure profiles, their ensemble mean profile, and their radius-dependent intrinsic scatter between 0.1R500 and 2.0R500. The scatter among profiles is minimized at radii between ~0.2R500 and ~0.5R500, with a value of ~20%. The best-fit mass scaling has a power-law slope of 0.49, which is shallower than the nominal prediction of 2/3 from self-similar hydrostatic equilibrium models. These results for the intrinsic scatter and mass scaling are largely consistent with previous analyses, most of which have relied heavily on X-ray derived pressures of clusters at significantly lower masses and redshifts compared to our sample.
104 - N.G. Czakon , J. Sayers , A. Mantz 2014
We present scaling relations between the integrated Sunyaev-Zeldovich Effect (SZE) signal, $Y_{rm SZ}$, its X-ray analogue, $Y_{rm X}equiv M_{rm gas}T_{rm X}$, and total mass, $M_{rm tot}$, for the 45 galaxy clusters in the Bolocam X-ray-SZ (BOXSZ) s ample. All parameters are integrated within $r_{2500}$. $Y_{2500}$ values are measured using SZE data collected with Bolocam, operating at 140 GHz at the Caltech Submillimeter Observatory (CSO). The temperature, $T_{rm X}$, and mass, $M_{rm gas,2500}$, of the intracluster medium are determined using X-ray data collected with Chandra, and $M_{rm tot}$ is derived from $M_{rm gas}$ assuming a constant gas mass fraction. Our analysis accounts for several potential sources of bias, including: selection effects, contamination from radio point sources, and the loss of SZE signal due to noise filtering and beam-smoothing effects. We measure the $Y_{2500}$--$Y_{rm X}$ scaling to have a power-law index of $0.84pm0.07$, and a fractional intrinsic scatter in $Y_{2500}$ of $(21pm7)%$ at fixed $Y_{rm X}$, both of which are consistent with previous analyses. We also measure the scaling between $Y_{2500}$ and $M_{2500}$, finding a power-law index of $1.06pm0.12$ and a fractional intrinsic scatter in $Y_{2500}$ at fixed mass of $(25pm9)%$. While recent SZE scaling relations using X-ray mass proxies have found power-law indices consistent with the self-similar prediction of 5/3, our measurement stands apart by differing from the self-similar prediction by approximately 5$sigma$. Given the good agreement between the measured $Y_{2500}$--$Y_{rm X}$ scalings, much of this discrepancy appears to be caused by differences in the calibration of the X-ray mass proxies adopted for each particular analysis.
The Sunyaev-Zeldovich (SZ) effect is a powerful tool for studying clusters of galaxies and cosmology. Large mm-wave telescopes are now routinely detecting and mapping the SZ effect in a number of clusters, measure their comptonisation parameter and u se them as probes of the large-scale structure and evolution of the universe. We show that estimates of the physical parameters of clusters (optical depth, plasma temperature, peculiar velocity, non-thermal components etc.) obtained from ground-based multi-band SZ photometry can be significantly biased, owing to the reduced frequency coverage, to the degeneracy between the parameters and to the presence of a number of independent components larger than the number of frequencies measured. We demonstrate that low-resolution spectroscopic measurements of the SZ effect that also cover frequencies $> 270$ GHz are effective in removing the degeneracy. We used accurate simulations of observations with lines-of-sight through clusters of galaxies with different experimental configurations (4-band photometers, 6-band photometer, multi-range differential spectrometer, full coverage spectrometers) and different intracluster plasma stratifications. We find that measurements carried out with ground-based few-band photometers are biased towards high electron temperatures and low optical depths, and require coverage of high frequency and/or independent complementary observations to produce unbiased information; a differential spectrometer that covers 4 bands with a resolution of $sim 6 GHz$ eliminates most if not all bias; full-range differential spectrometers are the ultimate resource that allows a full recovery of all parameters.
We present a technique to constrain galaxy cluster pressure profiles by jointly fitting Sunyaev-Zeldovich effect (SZE) data obtained with MUSTANG and Bolocam for the clusters Abell 1835 and MACS0647. Bolocam and MUSTANG probe different angular scales and are thus highly complementary. We find that the addition of the high resolution MUSTANG data can improve constraints on pressure profile parameters relative to those derived solely from Bolocam. In Abell 1835 and MACS0647, we find gNFW inner slopes of $gamma = 0.36_{-0.21}^{+0.33}$ and $gamma = 0.38_{-0.25}^{+0.20}$, respectively when $alpha$ and $beta$ are constrained to 0.86 and 4.67 respectively. The fitted SZE pressure profiles are in good agreement with X-ray derived pressure profiles.
We present constraints on cosmological parameters using number counts as a function of redshift for a sub-sample of 189 galaxy clusters from the Planck SZ (PSZ) catalogue. The PSZ is selected through the signature of the Sunyaev--Zeldovich (SZ) effec t, and the sub-sample used here has a signal-to-noise threshold of seven, with each object confirmed as a cluster and all but one with a redshift estimate. We discuss the completeness of the sample and our construction of a likelihood analysis. Using a relation between mass $M$ and SZ signal $Y$ calibrated to X-ray measurements, we derive constraints on the power spectrum amplitude $sigma_8$ and matter density parameter $Omega_{mathrm{m}}$ in a flat $Lambda$CDM model. We test the robustness of our estimates and find that possible biases in the $Y$--$M$ relation and the halo mass function are larger than the statistical uncertainties from the cluster sample. Assuming the X-ray determined mass to be biased low relative to the true mass by between zero and 30%, motivated by comparison of the observed mass scaling relations to those from a set of numerical simulations, we find that $sigma_8=0.75pm 0.03$, $Omega_{mathrm{m}}=0.29pm 0.02$, and $sigma_8(Omega_{mathrm{m}}/0.27)^{0.3} = 0.764 pm 0.025$. The value of $sigma_8$ is degenerate with the mass bias; if the latter is fixed to a value of 20% we find $sigma_8(Omega_{mathrm{m}}/0.27)^{0.3}=0.78pm 0.01$ and a tighter one-dimensional range $sigma_8=0.77pm 0.02$. We find that the larger values of $sigma_8$ and $Omega_{mathrm{m}}$ preferred by Plancks measurements of the primary CMB anisotropies can be accommodated by a mass bias of about 40%. Alternatively, consistency with the primary CMB constraints can be achieved by inclusion of processes that suppress power on small scales relative to the $Lambda$CDM model, such as a component of massive neutrinos (abridged).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا