ترغب بنشر مسار تعليمي؟ اضغط هنا

Searching for Needles in Haystacks - Looking for GRB gamma-rays with the Fermi/LAT Detector

131   0   0.0 ( 0 )
 نشر من قبل Carl Akerlof
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Since the launch of the Fermi Gamma-ray Space Telescope on June 11, 2008, 55 gamma-ray bursts (GRBs) have been observed at coordinates that fall within 66^circ of the Fermi Large Area Telescope (LAT) boresight with precise localizations provided by the NASA Swift mission or other satellites. Imposing selection cuts to exclude low Galactic latitudes and high zenith angles reduces the sample size to 41. Using matched filter techniques, the Fermi/LAT photon data for these fields have been examined for evidence of bursts that have so far evaded detection at energies above 100 MeV. Following comparisons with similar random background fields, two events, GRB 080905A and GRB 091208B, stand out as excellent candidates for such an identification. After excluding the six bright bursts previously reported by the LAT team, the remaining 35 events exhibit an excess of LAT diffuse photons with a statistical significance greater than 2 sigma, independent of the matched filter analysis. After accounting for the total number of photons in the well-localized fields and including estimates of detection efficiency, one concludes that somewhere in the range of 11% to 19% of all GRBs within the LAT field of view illuminate the detector with two or more energetic photons. These are the most stringent estimates of the high energy photon content of GRBs to date. The two new events associated with high energy photon emission have similar ratios of high to low energy fluences as observed previously. This separates them from bursts with similar low energy fluences by a factor of ten, suggesting a distinct class of events rather than a smooth continuum.



قيم البحث

اقرأ أيضاً

From the launch of the Fermi Gamma-ray Space Telescope to July 9, 2010, the Gamma-ray Burst Monitor (GBM) has detected 497 probable GRB events. Twenty-two of these satisfy the simultaneous requirements of an estimated burst direction within 52^circ o f the Fermi Large Area Telescope (LAT) boresight and a low energy fluence exceeding 5 $mu$erg/cm^2. Using matched filter techniques, the spatially correlated Fermi/LAT photon data above 100 MeV have been examined for evidence of bursts that have so far evaded detection at these energies. High energy emission is detected with great confidence for one event, GRB 090228A. Since the LAT has significantly better angular resolution than the GBM, real-time application of these methods could open the door to optical identification and richer characterization of a larger fraction of the relatively rare GRBs that include high energy emission.
The VHE component from at least two GRBs, i.e., GRB180720B and GRB190114C, has been detected in the afterglow phase. We systematically analyzed 199 GRBs detected by Fermi-LAT during 2008-2019. If an additional high-energy component exists in the afte rglows of Fermi-LAT GRBs, the best-fit spectral model could be a broken power-law (BPL) model with an upturn above a break energy. We compare the afterglow spectra using PL and BPL representations. Out of the 30 GRBs with >10GeV photons that arrived after T90, 25 GRBs are tentatively or significantly detected at 0.1-200 GeV after 2*T90. The spectrum of GRB131231A shows an upturn above a break of 1.6+-0.8~GeV, supporting the BPL model. For GRB131231A, we performed a modeling of its X-ray and gamma-ray spectra, and found that the SSC model can explain the upturn with acceptable parameter values. In the cases of GRBs 190114C, 171210A, 150902A, 130907A, 130427A, and 090902B, the improvement of the BPL fit compared to the PL fit is tentative or marginal. There is no conclusive evidence that an additional higher energy component commonly exists in Fermi-LAT GRB afterglows, except for a group of Fermi-LAT GRBs mentioned above. Such an additional high-energy component may be explained by the synchrotron self-Compton mechanism. Current and future VHE observations will provide important constraints on the issue.
The Fermi Large Area Telescope (LAT) is a powerful pulsar detector, as demonstrated by the over one hundred objects in its second catalog of pulsars. Pass 8 is a new reconstruction and event selection strategy developed by the Fermi-LAT collaboration . Due to the increased acceptance at low energy, Pass 8 improves the pulsation detection sensitivity. Ten new pulsars rise above the 5 sigma threshold and are presented in this work, as well as one previously seen with the former Pass 7 reconstruction. More than 60$%$ of the known pulsars with spin-down power ($dot{E}$) greater than $10^{36}$ erg/s show pulsations in gamma-rays, as seen with the Fermi Large Area Telescope. Many non-detections of these energetic pulsars are thought to be a consequence of a high background level, or a large distance leading to a flux below the sensitivity limit of the instrument. The gamma-ray beams of the others probably miss the Earth. The new Pass 8 data now allows the detection of gamma ray pulsations from three of these high spin-down pulsars, PSRs J1828$-$1101, J1831$-$0952 and J1837$-$0604, as well as three others with $dot{E}$ $ge 10^{35}$ erg/s. We report on their properties and we discuss the reasons for their detection with Pass 8.
The very high energy (VHE; >100 GeV) source HESS J0632+057 has been recently confirmed as a gamma-ray binary, a subclass of the high mass X-ray binary (HMXB) population, through the detection of an orbital period of 321 days. We performed a deep sear ch for the emission of HESS J0632+057 in the GeV energy range using data from the Fermi Large Area Telescope (LAT). The analysis was challenging due to the source being located in close proximity to the bright gamma-ray pulsar PSR J0633+0632 and lying in a crowded region of the Galactic plane where there is prominent diffuse emission. We formulated a Bayesian block algorithm adapted to work with weighted photon counts, in order to define the off-pulse phases of PSR J0633+0632. A detailed spectral-spatial model of a 5 deg circular region centred on the known location of HESS J0632+057 was generated to accurately model the LAT data. No significant emission from the location of HESS J0632+057 was detected in the 0.1-100 GeV energy range integrating over ~3.5 years of data; with a 95% flux upper limit of F_{0.1-100 GeV} < 3 x 10-8 ph cm-2 s-1. A search for emission over different phases of the orbit also yielded no significant detection. A search for source emission on shorter timescales (days--months) did not yield any significant detections. We also report the results of a search for radio pulsations using the 100-m Green Bank Telescope (GBT). No periodic signals or individual dispersed bursts of a likely astronomical origin were detected. We estimated the flux density limit of < 90/40 mu Jy at 2/9 GHz. The LAT flux upper limits combined with the detection of HESS J0632+057 in the 136-400 TeV energy band by the MAGIC collaboration imply that the VHE spectrum must turn over at energies <136 GeV placing constraints on any theoretical models invoked to explain the gamma-ray emission.
188 - Paola Grandi 2011
We review the high energy properties of Misaligned AGNs associated with gamma-ray sources detected by Fermi in 24 months of survey. Most of them are nearby emission low power radio galaxies (i.e FRIs) which probably have structured jets. On the contr ary, high power radio sources (i.e FRIIs) with GeV emission are rare. The small number of FRIIs does not seem to be related to their higher redshifts. Assuming proportionality between the radio core flux and the gamma-ray flux, several of them are expected to be bright enough to be detected above 100 MeV in spite of their distance. We suggest that beaming/jet structural differences are responsible for the detection rate discrepancy observed between FRIs and FRIIs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا