ﻻ يوجد ملخص باللغة العربية
The very high energy (VHE; >100 GeV) source HESS J0632+057 has been recently confirmed as a gamma-ray binary, a subclass of the high mass X-ray binary (HMXB) population, through the detection of an orbital period of 321 days. We performed a deep search for the emission of HESS J0632+057 in the GeV energy range using data from the Fermi Large Area Telescope (LAT). The analysis was challenging due to the source being located in close proximity to the bright gamma-ray pulsar PSR J0633+0632 and lying in a crowded region of the Galactic plane where there is prominent diffuse emission. We formulated a Bayesian block algorithm adapted to work with weighted photon counts, in order to define the off-pulse phases of PSR J0633+0632. A detailed spectral-spatial model of a 5 deg circular region centred on the known location of HESS J0632+057 was generated to accurately model the LAT data. No significant emission from the location of HESS J0632+057 was detected in the 0.1-100 GeV energy range integrating over ~3.5 years of data; with a 95% flux upper limit of F_{0.1-100 GeV} < 3 x 10-8 ph cm-2 s-1. A search for emission over different phases of the orbit also yielded no significant detection. A search for source emission on shorter timescales (days--months) did not yield any significant detections. We also report the results of a search for radio pulsations using the 100-m Green Bank Telescope (GBT). No periodic signals or individual dispersed bursts of a likely astronomical origin were detected. We estimated the flux density limit of < 90/40 mu Jy at 2/9 GHz. The LAT flux upper limits combined with the detection of HESS J0632+057 in the 136-400 TeV energy band by the MAGIC collaboration imply that the VHE spectrum must turn over at energies <136 GeV placing constraints on any theoretical models invoked to explain the gamma-ray emission.
We study changes in the $gamma$--ray intensity at very high energies observed from the $gamma$--ray binary HESS J0632+057. Publicly available data collected by Cherenkov telescopes were examined by means of a simple method utilizing solely the number
GeV gamma-ray emission from two gamma-ray binary candidates, HESS J0632+057 and AGL J2241+4454, which were recently reported by H.E.S.S. and AGILE, respectively, have been searched for using the Fermi-LAT archival dataset. Spatial and temporal distri
The variable gamma-ray source HESS J0632+057 is an excellent candidate for a gamma-ray binary. The putative binary system was discovered as a point-like VHE gamma-ray source by HESS. Later measurements by VERITAS yielding no detection, provided evide
The High Energy Stereoscopic System (HESS) survey of the Galactic plane has established the existence of a substantial number (~40) of Galactic TeV gamma-ray sources, a large fraction of which remain unidentified. HESS J0632+057 is one of a small fra
Context. After the detection of a 321-days periodicity in X-rays, HESS J0632+057 can be robustly considered a new member of the selected group of gamma-ray binaries. These sources are known to show extended radio structure at scales of milliarcsecond