ﻻ يوجد ملخص باللغة العربية
We present a detailed study of D-brane superpotentials depending on several open and closed-string deformations. The relative cohomology group associated with the brane defines a generalized hypergeometric GKZ system which determines the off-shell superpotential and its analytic properties under deformation. Explicit expressions for the N=1 superpotential for families of type II/F-theory compactifications are obtained for a list of multi-parameter examples. Using the Hodge theoretic approach to open-string mirror symmetry, we obtain new predictions for integral disc invariants in the A model instanton expansion. We study the behavior of the brane vacua under extremal transitions between different Calabi-Yau spaces and observe that the web of Calabi-Yau vacua remains connected for a particular class of branes.
We perform a Hodge theoretic study of parameter dependent families of D-branes on compact Calabi-Yau manifolds in type II and F-theory compactifcations. Starting from a geometric Gauss-Manin connection for B type branes we study the integrability and
We illustrate the correspondence between the N=1 superstring compactifications with fluxes, the N=4 gauged supergravities and the superpotential and Kahler potential of the effective N=1 supergravity in four dimensions. In particular we derive, in th
We generalize the higher-derivative F-terms introduced by Beasley and Witten (hep-th/0409149) for SU(2) superQCD to Sp(N) gauge theories with fundamental matter. We generate these terms by integrating out massive modes at tree level from an effective
In this paper we compute gaugino and scalar condensates in N=1 supersymmetric gauge theories with and without massive adjoint matter, using localization formulae over the multi--instanton moduli space. Furthermore we compute the chiral ring relations
Using the F-theory realization, we identify a subclass of 6d (1,0) SCFTs whose compactification on a Riemann surface leads to N = 1 4d SCFTs where the moduli space of the Riemann surface is part of the moduli space of the theory. In particular we arg