ﻻ يوجد ملخص باللغة العربية
A systematic study of the influence of the viscous effect on both the spectra and the nonlinear fluxes of conserved as well as non conserved quantities in Navier-Stokes turbulence is proposed. This analysis is used to estimate the helicity dissipation scale which is shown to coincide with the energy dissipation scale. However, it is shown using the decomposition of helicity into eigen modes of the curl operator, that viscous effects have to be taken into account for wave vector smaller than the Kolomogorov wave number in the evolution of these eigen components of the helicity.
Recent experiments and simulations have shown that unsteady turbulent flows, before reaching a dynamic equilibrium state, display a universal behaviour. We show that the observed universal non-equilibrium scaling can be explained using a non-equilibr
Local dissipation scales are a manifestation of the intermittent small-scale nature of turbulence. We report the first experimental evaluation of the distribution of local dissipation scales in turbulent pipe flows for a range of Reynolds numbers, 2.
The turbulence of superfluid helium is investigated numerically at finite temperature. Direct numerical simulations are performed with a truncated HVBK model, which combines the continuous description of the Hall-Vinen-Bekeravich-Khalatnikov equation
Intense fluctuations of energy dissipation rate in turbulent flows result from the self-amplification of strain rate via a quadratic nonlinearity, with contributions from vorticity (via the vortex stretching mechanism) and the pressure Hessian tensor
A general Hamiltonian wave system with quartic resonances is considered, in the standard kinetic limit of a continuum of weakly interacting dispersive waves with random phases. The evolution equation for the multimode characteristic function $Z$ is o