ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-epoch Near-Infrared Interferometry of the Spatially Resolved Disk Around the Be Star Zeta Tau

153   0   0.0 ( 0 )
 نشر من قبل Gail Schaefer
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present interferometric observations of the Be star Zeta Tau obtained using the MIRC beam combiner at the CHARA Array. We resolved the disk during four epochs in 2007-2009. We fit the data with a geometric model to characterize the circumstellar disk as a skewed elliptical Gaussian and the central Be star as a uniform disk. The visibilities reveal a nearly edge-on disk with a FWHM major axis of ~ 1.8 mas in the H-band. The non-zero closure phases indicate an asymmetry within the disk. Interestingly, when combining our results with previously published interferometric observations of Zeta Tau, we find a correlation between the position angle of the disk and the spectroscopic V/R ratio, suggesting that the tilt of the disk is precessing. This work is part of a multi-year monitoring campaign to investigate the development and outward motion of asymmetric structures in the disks of Be stars.



قيم البحث

اقرأ أيضاً

We present near-infrared coronagraphic imaging polarimetry of RY Tau. The scattered light in the circumstellar environment was imaged at H-band at a high resolution (~0.05) for the first time, using Subaru-HiCIAO. The observed polarized intensity (PI ) distribution shows a butterfly-like distribution of bright emission with an angular scale similar to the disk observed at millimeter wavelengths. This distribution is offset toward the blueshifted jet, indicating the presence of a geometrically thick disk or a remnant envelope, and therefore the earliest stage of the Class II evolutionary phase. We perform comparisons between the observed PI distribution and disk models with: (1) full radiative transfer code, using the spectral energy distribution (SED) to constrain the disk parameters; and (2) monochromatic simulations of scattered light which explore a wide range of parameters space to constrain the disk and dust parameters. We show that these models cannot consistently explain the observed PI distribution, SED, and the viewing angle inferred by millimeter interferometry. We suggest that the scattered light in the near-infrared is associated with an optically thin and geometrically thick layer above the disk surface, with the surface responsible for the infrared SED. Half of the scattered light and thermal radiation in this layer illuminates the disk surface, and this process may significantly affect the thermal structure of the disk.
We present H-band polarimetric imagery of UX Tau A taken with HiCIAO/AO188 on the Subaru Telescope. UX Tau A has been classified as a pre-transitional disk object, with a gap structure separating its inner and outer disks. Our imagery taken with the 0.15 (21 AU) radius coronagraphic mask has revealed a strongly polarized circumstellar disk surrounding UX Tau A which extends to 120 AU, at a spatial resolution of 0.1 (14 AU). It is inclined by 46 pm 2 degree as the west side is nearest. Although SED modeling and sub-millimeter imagery suggested the presence of a gap in the disk, with the inner edge of the outer disk estimated to be located at 25 - 30 AU, we detect no evidence of a gap at the limit of our inner working angle (23 AU) at the near-infrared wavelength. We attribute the observed strong polarization (up to 66 %) to light scattering by dust grains in the disk. However, neither polarization models of the circumstellar disk based on Rayleigh scattering nor Mie scattering approximations were consistent with the observed azimuthal profile of the polarization degrees of the disk. Instead, a geometric optics model of the disk with nonspherical grains with the radii of 30 micron meter is consistent with the observed profile. We suggest that the dust grains have experienced frequent collisional coagulations and have grown in the circumstellar disk of UX Tau A.
We have conducted the first systematic study of Herbig Ae/Be stars using the technique of long baseline stellar interferometry in the near-infrared. The principal result of this paper is that the IOTA interferometer resolves the source of infrared ex cess in 11 of the 15 systems surveyed. The visibility data for all the sources has been interpreted within the context of four simple models which represent a range of plausible representations for the brightness distribution of the source of excess emission: a Gaussian, a narrow uniform ring, a flat blackbody disk with a single temperature power law, and an infrared companion. We find that the characteristic sizes of the near-infrared emitting regions are larger than previously thought (0.5-5.9 AU, as given by the FWHM of the Gaussian intensity). A further major result of this paper is that the sizes measured, when combined with the observed spectral energy distributions, essentially rule out accretion disk models represented by blackbody disks with the canonical radial temperature law with exponent -3/4. We also find that, within the range observed in this study, none of the sources (except the new binary) shows varying visibilities as the orientation of the interferometer baseline changes. Taken as an ensemble, with no clear evidence in favor of axi-symmetric structure, the observations favor the interpretation that the circumstellar dust is distributed in spherical envelopes (the Gaussian model) or thin shells (the ring model).
We present near-infrared H and K-band spectro-interferometric observations of the gaseous disk around the primary Be star in the delta Sco binary system, obtained in 2007 (between periastron passages in 2000 and 2011). Observations using the CHARA/MI RC instrument at H-band resolve an elongated disk with a Gaussian FWHM 1.18 x 0.91 mas. Using the Keck Interferometer, the source of the K-band continuum emission is only marginally spatially resolved, and consequently we estimate a relatively uncertain K-band continuum disk FWHM of 0.7 +/- 0.3 mas. Line emission on the other hand, He1 (2.0583 micron) and Br gamma (2.1657 micron), is clearly detected, with about 10% lower visibilities than those of the continuum. When taking into account the continuum/line flux ratio this translates into much larger sizes for the line emission regions: 2.2 +/- 0.4 mas and 1.9 +/- 0.3 mas for He1 and Br gamma respectively. Our KI data also reveal a relatively flat spectral differential phase response, ruling out significant off-center emission. We expect these new measurements will help constrain dynamical models being actively developed in order to explain the disk formation process in the delta Sco system and Be stars in general.
The observed emission lines of Be stars originate from a circumstellar Keplerian disk that are generally well explained by the Viscous Decretion Disk model. In an earlier work we performed the modeling of the full light curve of the bright Be star $o mega$ CMa (Ghoreyshi et al. 2018) with the 1-D time-dependent hydrodynamics code SINGLEBE and the Monte Carlo radiative-transfer code HDUST. We used the V -band light curve that probes the inner disk through four disk formation and dissipation cycles. This new study compares predictions of the same set of model parameters with time-resolved photometry from the near UV through the mid-infrared, comprehensive series of optical spectra, and optical broad-band polarimetry, that overall represent a larger volume of the disk. Qualitatively, the models reproduce the trends in the observed data due to the growth and decay of the disk. However, quantitative differences exist, e.g., an overprediction of the flux increasing with wavelength, too slow decreases in Balmer emission-line strength that are too slow during disk dissipation, and the discrepancy between the range of polarimetric data and the model. We find that a larger value of the viscosity parameter alone, or a truncated disk by a companion star, reduces these discrepancies by increasing the dissipation rate in the outer regions of the disk.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا