ترغب بنشر مسار تعليمي؟ اضغط هنا

The IllustrisTNG Simulations: Public Data Release

146   0   0.0 ( 0 )
 نشر من قبل Dylan Nelson
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the full public release of all data from the TNG50, TNG100 and TNG300 simulations of the IllustrisTNG project. IllustrisTNG is a suite of large volume, cosmological, gravo-magnetohydrodynamical simulations run with the moving-mesh code Arepo. TNG includes a comprehensive model for galaxy formation physics, and each TNG simulation self-consistently solves for the coupled evolution of dark matter, cosmic gas, luminous stars, and supermassive blackholes from early time to the present day, z=0. Each of the flagship runs -- TNG50, TNG100, and TNG300 -- are accompanied by lower-resolution and dark-matter only counterparts, and we discuss scientific and numerical cautions and caveats relevant when using TNG. Full volume snapshots are available at 100 redshifts; halo and subhalo catalogs at each snapshot and merger trees are also released. The data volume now directly accessible online is ~1.1 PB, including 2,000 full volume snapshots and ~110,000 high time-resolution subbox snapshots. Data access and analysis examples are available in IDL, Python, and Matlab. We describe improvements and new functionality in the web-based API, including on-demand visualization and analysis of galaxies and halos, exploratory plotting of scaling relations and other relationships between galactic and halo properties, and a new JupyterLab interface. This provides an online, browser-based, near-native data analysis platform which supports user computation with fully local access to TNG data, alleviating the need to download large simulated datasets.


قيم البحث

اقرأ أيضاً

As part of the AGORA High-resolution Galaxy Simulations Comparison Project (Kim et al. 2014, 2016) we have generated a suite of isolated Milky Way-mass galaxy simulations using 9 state-of-the-art gravito-hydrodynamics codes widely used in the numeric al galaxy formation community. In these simulations we adopted identical galactic disk initial conditions, and common physics models (e.g., radiative cooling and ultraviolet background by a standardized package). Subgrid physics models such as Jeans pressure floor, star formation, supernova feedback energy, and metal production were carefully constrained. Here we release the simulation data to be freely used by the community. In this release we include the disk snapshots at 0 and 500Myr of evolution per each code as used in Kim et al. (2016), from simulations with and without star formation and feedback. We encourage any member of the numerical galaxy formation community to make use of these resources for their research - for example, compare their own simulations with the AGORA galaxies, with the common analysis yt scripts used to obtain the plots shown in our papers, also available in this release.
The Kilo-Degree Survey (KiDS) is an ongoing optical wide-field imaging survey with the OmegaCAM camera at the VLT Survey Telescope. It aims to image 1500 square degrees in four filters (ugri). The core science driver is mapping the large-scale matter distribution in the Universe, using weak lensing shear and photometric redshift measurements. Further science cases include galaxy evolution, Milky Way structure, detection of high-redshift clusters, and finding rare sources such as strong lenses and quasars. Here we present the third public data release (DR3) and several associated data products, adding further area, homogenized photometric calibration, photometric redshifts and weak lensing shear measurements to the first two releases. A dedicated pipeline embedded in the Astro-WISE information system is used for the production of the main release. Modifications with respect to earlier releases are described in detail. Photometric redshifts have been derived using both Bayesian template fitting, and machine-learning techniques. For the weak lensing measurements, optimized procedures based on the THELI data reduction and lensfit shear measurement packages are used. In DR3 stacked ugri images, weight maps, masks, and source lists for 292 new survey tiles (~300 sq.deg) are made available. The multi-band catalogue, including homogenized photometry and photometric redshifts, covers the combined DR1, DR2 and DR3 footprint of 440 survey tiles (447 sq.deg). Limiting magnitudes are typically 24.3, 25.1, 24.9, 23.8 (5 sigma in a 2 arcsec aperture) in ugri, respectively, and the typical r-band PSF size is less than 0.7 arcsec. The photometric homogenization scheme ensures accurate colors and an absolute calibration stable to ~2% for gri and ~3% in u. Separately released are a weak lensing shear catalogue and photometric redshifts based on two different machine-learning techniques.
This paper documents the sixteenth data release (DR16) from the Sloan Digital Sky Surveys; the fourth and penultimate from the fourth phase (SDSS-IV). This is the first release of data from the southern hemisphere survey of the Apache Point Observato ry Galactic Evolution Experiment 2 (APOGEE-2); new data from APOGEE-2 North are also included. DR16 is also notable as the final data release for the main cosmological program of the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), and all raw and reduced spectra from that project are released here. DR16 also includes all the data from the Time Domain Spectroscopic Survey (TDSS) and new data from the SPectroscopic IDentification of ERosita Survey (SPIDERS) programs, both of which were co-observed on eBOSS plates. DR16 has no new data from the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey (or the MaNGA Stellar Library MaStar). We also preview future SDSS-V operations (due to start in 2020), and summarize plans for the final SDSS-IV data release (DR17).
91 - Stuart McAlpine 2015
We present the public data release of halo and galaxy catalogues extracted from the EAGLE suite of cosmological hydrodynamical simulations of galaxy formation. These simulations were performed with an enhanced version of the GADGET code that includes a modified hydrodynamics solver, time-step limiter and subgrid treatments of baryonic physics, such as stellar mass loss, element-by-element radiative cooling, star formation and feedback from star formation and black hole accretion. The simulation suite includes runs performed in volumes ranging from 25 to 100 comoving megaparsecs per side, with numerical resolution chosen to marginally resolve the Jeans mass of the gas at the star formation threshold. The free parameters of the subgrid models for feedback are calibrated to the redshift z=0 galaxy stellar mass function, galaxy sizes and black hole mass - stellar mass relation. The simulations have been shown to match a wide range of observations for present-day and higher-redshift galaxies. The raw particle data have been used to link galaxies across redshifts by creating merger trees. The indexing of the tree produces a simple way to connect a galaxy at one redshift to its progenitors at higher redshift and to identify its descendants at lower redshift. In this paper we present a relational database which we are making available for general use. A large number of properties of haloes and galaxies and their merger trees are stored in the database, including stellar masses, star formation rates, metallicities, photometric measurements and mock gri images. Complex queries can be created to explore the evolution of more than 10^5 galaxies, examples of which are provided in appendix. (abridged)
We examine how the post-processed content of molecular hydrogen (H$_2$) in galaxies from the TNG100 cosmological, hydrodynamic simulation changes with environment at $z!=!0$, assessing central/satellite status and host halo mass. We make close compar isons with the carbon monoxide (CO) emission survey xCOLD GASS where possible, having mock-observed TNG100 galaxies to match the surveys specifications. For a representative sample of host haloes across $10^{11}!lesssim!M_{rm 200c}/{rm M}_{odot}!<!10^{14.6}$, TNG100 predicts that satellites with $m_*!geq!10^9,{rm M}_{odot}$ should have a median deficit in their H$_2$ fractions of $sim$0.6 dex relative to centrals of the same stellar mass. Once observational and group-finding uncertainties are accounted for, the signature of this deficit decreases to $sim$0.2 dex. Remarkably, we calculate a deficit in xCOLD GASS satellites H$_2$ content relative to centrals of 0.2--0.3 dex, in line with our prediction. We further show that TNG100 and SDSS data exhibit continuous declines in the average star formation rates of galaxies at fixed stellar mass in denser environments, in quantitative agreement with each other. By tracking satellites from their moment of infall in TNG100, we directly show that atomic hydrogen (HI) is depleted at fractionally higher rates than H$_2$ on average. Supporting this picture, we find that the H$_2$/HI mass ratios of satellites are elevated relative to centrals in xCOLD GASS. We provide additional predictions for the effect of environment on H$_2$ -- both absolute and relative to HI -- that can be tested with spectral stacking in future CO surveys.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا