ترغب بنشر مسار تعليمي؟ اضغط هنا

Combined ion and atom trap for low temperature ion-atom physics

138   0   0.0 ( 0 )
 نشر من قبل Sadiq Rangwala Dr
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report an experimental apparatus and technique which simultaneously traps ions and cold atoms with spatial overlap. Such an apparatus is motivated by the study of ion-atom processes at temperatures ranging from hot to ultra-cold. This area is a largely unexplored domain of physics with cold trapped atoms. In this article we discuss the general design considerations for combining these two traps and present our experimental setup. The ion trap and atom traps are characterized independently of each other. The simultaneous operation of both is then described and experimental signatures of the effect of the ions and cold-atoms on each other are presented. In conclusion the use of such an instrument for several problems in physics and chemistry is briefly discussed.



قيم البحث

اقرأ أيضاً

In this article we describe the design, construction and implementation of our ion-atom hybrid system incorporating a high resolution time of flight mass spectrometer (TOFMS). Potassium atoms ($^{39}$K) in a Magneto Optical Trap (MOT) and laser coole d calcium ions ($^{40}$Ca$^+$) in a linear Paul trap are spatially overlapped and the combined trap is integrated with a TOFMS for radial extraction and detection of reaction products. We also present some experimental results showing interactions between $^{39}$K$^+$ and $^{39}$K, $^{40}$Ca$^+$ and $^{39}$K$^+$ as well as $^{40}$Ca$^+$ and $^{39}$K pairs. Finally, we discuss prospects for cooling CaH$^+$ molecular ions in the hybrid ion-atom system.
We study cold heteronuclear atom ion collisions by immersing a trapped single ion into an ultracold atomic cloud. Using ultracold atoms as reaction targets, our measurement is sensitive to elastic collisions with extremely small energy transfer. The observed energy-dependent elastic atom-ion scattering rate deviates significantly from the prediction of Langevin but is in full agreement with the quantum mechanical cross section. Additionally, we characterize inelastic collisions leading to chemical reactions at the single particle level and measure the energy-dependent reaction rate constants. The reaction products are identified by in-trap mass spectrometry, revealing the branching ratio between radiative and non-radiative charge exchange processes.
The control of the ultracold collisions between neutral atoms is an extensive and successful field of study. The tools developed allow for ultracold chemical reactions to be managed using magnetic fields, light fields and spin-state manipulation of t he colliding particles among other methods. The control of chemical reactions in ultracold atom-ion collisions is a young and growing field of research. Recently, the collision energy and the ion electronic state were used to control atom-ion interactions. Here, we demonstrate spin-controlled atom-ion inelastic processes. In our experiment, both spin-exchange and charge-exchange reactions are controlled in an ultracold Rb-Sr$^+$ mixture by the atomic spin state. We prepare a cloud of atoms in a single hyperfine spin-state. Spin-exchange collisions between atoms and ion subsequently polarize the ion spin. Electron transfer is only allowed for (RbSr)$^+$ colliding in the singlet manifold. Initializing the atoms in various spin states affects the overlap of the collision wavefunction with the singlet molecular manifold and therefore also the reaction rate. We experimentally show that by preparing the atoms in different spin states one can vary the charge-exchange rate in agreement with theoretical predictions.
We have developed a unique neutralizer device that uses an yttrium target surrounded by a platinum wall to magneto-optically trap radioactive atoms. In general, the radioactive nucleus produced in a nuclear reaction is extracted and transported in io n form. For the magneto-optical trap, thermal neutralization must occur on the surface of a metal with a small work function. The converter can produce a neutral atomic beam with small angular divergence that, given the recycling of atoms and ions, converts ions into neutral atoms with remarkable efficiency. We demonstrated the ion neutralization process using stable rubidium and confirmed $10^6$ neutralized atoms in the magneto-optical trap. Additionally, the experiment using francium demonstrated the obtaining of neutralized francium atoms.
We demonstrate the production of high density cold atom samples (2e14 atoms/cc) in a simple optical lattice formed with YAG light that is diffracted from a holographic phase plate. A loading protocol is described that results in 10,000 atoms per latt ice site. Rapid free evaporation leads to phase space densities of 1/150 within 50 msec. The resulting small, high density atomic clouds are very attractive for a number of experiments, including ultracold Rydberg atom physics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا