ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin controlled atom-ion inelastic collisions

141   0   0.0 ( 0 )
 نشر من قبل Tomas Sikorsky
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The control of the ultracold collisions between neutral atoms is an extensive and successful field of study. The tools developed allow for ultracold chemical reactions to be managed using magnetic fields, light fields and spin-state manipulation of the colliding particles among other methods. The control of chemical reactions in ultracold atom-ion collisions is a young and growing field of research. Recently, the collision energy and the ion electronic state were used to control atom-ion interactions. Here, we demonstrate spin-controlled atom-ion inelastic processes. In our experiment, both spin-exchange and charge-exchange reactions are controlled in an ultracold Rb-Sr$^+$ mixture by the atomic spin state. We prepare a cloud of atoms in a single hyperfine spin-state. Spin-exchange collisions between atoms and ion subsequently polarize the ion spin. Electron transfer is only allowed for (RbSr)$^+$ colliding in the singlet manifold. Initializing the atoms in various spin states affects the overlap of the collision wavefunction with the singlet molecular manifold and therefore also the reaction rate. We experimentally show that by preparing the atoms in different spin states one can vary the charge-exchange rate in agreement with theoretical predictions.



قيم البحث

اقرأ أيضاً

We study cold heteronuclear atom ion collisions by immersing a trapped single ion into an ultracold atomic cloud. Using ultracold atoms as reaction targets, our measurement is sensitive to elastic collisions with extremely small energy transfer. The observed energy-dependent elastic atom-ion scattering rate deviates significantly from the prediction of Langevin but is in full agreement with the quantum mechanical cross section. Additionally, we characterize inelastic collisions leading to chemical reactions at the single particle level and measure the energy-dependent reaction rate constants. The reaction products are identified by in-trap mass spectrometry, revealing the branching ratio between radiative and non-radiative charge exchange processes.
We present a joint experimental and theoretical study of spin dynamics of a single $^{88}$Sr$^+$ ion colliding with an ultracold cloud of Rb atoms in various hyperfine states. While spin-exchange between the two species occurs after 9.1(6) Langevin c ollisions on average, spin-relaxation of the Sr$^+$ ion Zeeman qubit occurs after 48(7) Langevin collisions which is significantly slower than in previously studied systems due to a small second-order spin-orbit coupling. Furthermore, a reduction of the endothermic spin-exchange rate was observed as the magnetic field was increased. Interestingly, we found that, while the phases acquired when colliding on the spin singlet and triplet potentials vary largely between different partial waves, the singlet-triplet phase difference, which determines the spin-exchange cross-section, remains locked to a single value over a wide range of partial-waves which leads to quantum interference effects.
We report on improvements extending the capabilities of the atom-by-atom assembler described in [Barredo et al., Science 354, 1021 (2016)] that we use to create fully-loaded target arrays of more than 100 single atoms in optical tweezers, starting fr om randomly-loaded, half-filled initial arrays. We describe four variants of the sorting algorithm that (i) allow decrease the number of moves needed for assembly and (ii) enable the assembly of arbitrary, non-regular target arrays. We finally demonstrate experimentally the performance of this enhanced assembler for a variety of target arrays.
We investigate collisional loss in an ultracold mixture of $^{40}$K$^{87}$Rb molecules and $^{87}$Rb atoms, where chemical reactions between the two species are energetically forbidden. Through direct detection of the KRb$_{2}^{*}$ intermediate compl exes formed from atom-molecule collisions, we show that a $1064$ nm laser source used for optical trapping of the sample can efficiently deplete the complex population via photo-excitation, an effect which can explain the universal two-body loss observed in the mixture. By monitoring the time-evolution of the KRb$_{2}^{*}$ population after a sudden reduction in the $1064$ nm laser intensity, we measure the lifetime of the complex ($0.39(6)$ ms), as well as the photo-excitation rate for $1064$ nm light ($0.50(3)$ $mu$s$^{-1}($kW/cm$^{2})^{-1}$). The observed lifetime is ${sim}10^{5}$ times longer than recent estimates based on the Rice-Ramsperger-Kassel-Marcus statistical theory, which calls for new insight to explain such a dramatic discrepancy.
We demonstrate that a dispersive imaging technique based on the Faraday effect can measure the atom number in a large, ultracold atom cloud with a precision below the atom shot noise level. The minimally destructive character of the technique allows us to take multiple images of the same cloud, which enables sub-atom shot noise measurement precision of the atom number and allows for an in situ determination of the measurement precision. We have developed a noise model that quantitatively describes the noise contributions due to photon shot noise in the detected light and the noise associated with single atom loss. This model contains no free parameters and is calculated through an analysis of the fluctuations in the acquired images. For clouds containing $N sim 5 times 10^6$ atoms, we achieve a precision more than a factor of two below the atom shot noise level.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا