ﻻ يوجد ملخص باللغة العربية
The brightest observed emission line in many star-forming galaxies is the [CII] 158 micron line, making it detectable up to z~7. In order to better understand and quantify the [CII] emission as a tracer of star-formation, the theoretical ratio between the [NII] 205 micron emission and the [CII] 158 micron emission has been employed to empirically determine the fraction of [CII] emission that originates from the ionized and neutral phases of the ISM. Sub-kiloparsec measurements of the [CII] 158 micron and [NII] 205 micron line in nearby galaxies have recently become available as part of the Key Insights in Nearby Galaxies: a Far Infrared Survey with Herschel (KINGFISH) and Beyond the Peak (BtP) programs. With the information from these two far-infrared lines along with the multi-wavelength suite of KINGFISH data, a calibration of the [CII] emission line as a star formation rate indicator and a better understanding of the [CII] deficit are pursued. [CII] emission is also compared to PAH emission in these regions to compare photoelectric heating from PAH molecules to cooling by [CII] in the neutral and ionized phases of the ISM. We find that the [CII] emission originating in the neutral phase of the ISM does not exhibit a deficit with respect to the infrared luminosity and is therefore preferred over the [CII] emission originating in the ionized phase of the ISM as a star formation rate indicator for the normal star-forming galaxies included in this sample.
The [CII] 157.74 $mu$m transition is the dominant coolant of the neutral interstellar gas, and has great potential as a star formation rate (SFR) tracer. Using the Herschel KINGFISH sample of 46 nearby galaxies, we investigate the relation of [CII] s
We present and analyze the possibility of using optical ${it u}$-band luminosities to estimate star-formation rates (SFRs) of galaxies based on the data from the South Galactic Cap ${it u }$ band Sky Survey (SCUSS), which provides a deep ${it u}$-ban
We report on a search for the [CII] 158 micron emission line from galaxies associated with four high-metallicity damped Ly-alpha absorbers (DLAs) at z ~ 4 using the Atacama Large Millimeter/sub-millimeter Array (ALMA). We detect [CII] 158 micron emis
Our objectives are to determine the properties of the interstellar medium (ISM) and of star-formation in typical star-forming galaxies at high redshift. Following up on our previous multi-wavelength observations with HST, Spitzer, Herschel, and the P
The [CII] fine structure transition at 158 microns is the dominant cooling line of cool interstellar gas, and is the brightest of emission lines from star forming galaxies from FIR through meter wavelengths. With the advent of ALMA and NOEMA, capable