ترغب بنشر مسار تعليمي؟ اضغط هنا

Momentum-resolved study of an array of 1D strongly phase-fluctuating Bose gases

354   0   0.0 ( 0 )
 نشر من قبل Nicole Fabbri
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the coherence properties of an array of one-dimensional Bose gases with short-scale phase fluctuations. The momentum distribution is measured using Bragg spectroscopy and an effective coherence length of the whole ensemble is defined. In addition, we propose and demonstrate that time-of-flight absorption imaging can be used as a simple probe to directly measure the coherence-length of 1D gases in the regime where phase-fluctuations are strong. This method is suitable for future studies such as investigating the effect of disorder on the phase coherence.

قيم البحث

اقرأ أيضاً

The dynamics of strongly interacting many-body quantum systems are notoriously complex and difficult to simulate. A new theory, generalized hydrodynamics (GHD), promises to efficiently accomplish such simulations for nearly-integrable systems. It pre dicts the evolution of the distribution of rapidities, which are the momenta of the quasiparticles in integrable systems. GHD was recently tested experimentally for weakly interacting atoms, but its applicability to strongly interacting systems has not been experimentally established. Here we test GHD with bundles of one-dimensional (1D) Bose gases by performing large trap quenches in both the strong and intermediate coupling regimes. We measure the evolving distribution of rapidities, and find that theory and experiment agree well over dozens of trap oscillations, for average dimensionless coupling strengths that range from 0.3 to 9.3. By also measuring momentum distributions, we gain experimental access to the interaction energy and thus to how the quasiparticles themselves evolve. The accuracy of GHD demonstrated here confirms its wide applicability to the simulation of nearly-integrable quantum dynamical systems. Future experimental studies are needed to explore GHD in spin chains, as well as the crossover between GHD and regular hydrodynamics in the presence of stronger integrability breaking perturbations.
163 - Frederic Chevy 2016
The strongly interacting Bose gas is one of the most fundamental paradigms of quantum many-body physics and the subject of many experimental and theoretical investigations. We review recent progress on strongly correlated Bose gases, starting with a description of beyond mean-field corrections. We show that the Efimov effect leads to non universal phenomena and to a metastability of the low temperature Bose gas through three-body recombination to deeply bound molecular states. We outline differences and similarities with ultracold Fermi gases, discuss recent experiments on the unitary Bose gas, and finally present a few perspectives for future research.
67 - Thibaut Jacqmin 2012
We investigate the momentum distribution of weakly interacting 1D Bose gases at thermal equilibrium both experimentally and theoretically. Momentum distribution of single 1D Bose gases is measured using a focusing technique, whose resolution we impro ve via a guiding scheme. The momentum distribution compares very well with quantum Monte Carlo calculations for the Lieb-Liniger model at finite temperature, allowing for an accurate thermometry of the gas that agrees with (and improves upon) the thermometry based on in situ density fluctuation measurements. The quasi-condensation crossover is investigated via two different experimental parameter sets, corresponding to the two different sides of the crossover. Classical field theory is expected to correctly describe the quasi-condensation crossover of weakly interacting gases. We derive the condition of validity of the classical field theory, and find that, in typical experiments, interactions are too strong for this theory to be accurate. This is confirmed by a comparison between the classical field predictions and the numerically exact quantum Monte Carlo calculations.
The Lieb-Liniger model is a prototypical integrable model and has been turned into the benchmark physics in theoretical and numerical investigations of low dimensional quantum systems. In this note, we present various methods for calculating local and nonlocal $M$-particle correlation functions, momentum distribution and static structure factor. In particular, using the Bethe ansatz wave function of the strong coupling Lieb-Liniger model, we analytically calculate two-point correlation function, the large moment tail of momentum distribution and static structure factor of the model in terms of the fractional statistical parameter $alpha =1-2/gamma$, where $gamma$ is the dimensionless interaction strength. We also discuss the Tans adiabatic relation and other universal relations for the strongly repulsive Lieb-Liniger model in term of the fractional statistical parameter.
We prepare and study strongly interacting two-dimensional Bose gases in the superfluid, the classical Berezinskii-Kosterlitz-Thouless (BKT) transition, and the vacuum-to-superfluid quantum critical regimes. A wide range of the two-body interaction st rength 0.05 < g < 3 is covered by tuning the scattering length and by loading the sample into an optical lattice. Based on the equations of state measurements, we extract the coupling constants as well as critical thermodynamic quantities in different regimes. In the superfluid and the BKT transition regimes, the extracted coupling constants show significant down-shifts from the mean-field and perturbation calculations when g approaches or exceeds one. In the BKT and the quantum critical regimes, all measured thermodynamic quantities show logarithmic dependence on the interaction strength, a tendency confirmed by the extended classical-field and renormalization calculations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا