ترغب بنشر مسار تعليمي؟ اضغط هنا

ArgoNeuT and the Neutrino-Argon Charged Current Quasi-Elastic Cross Section

180   0   0.0 ( 0 )
 نشر من قبل Joshua Spitz
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English
 تأليف Joshua Spitz




اسأل ChatGPT حول البحث

ArgoNeuT, a Liquid Argon Time Projection Chamber in the NuMI beamline at Fermilab, has recently collected thousands of neutrino and anti-neutrino events between 0.1 and 10 GeV. The experiment will, among other things, measure the cross section of the neutrino and anti-neutrino Charged Current Quasi-Elastic interaction and analyze the vertex activity associated with such events. These topics are discussed along with ArgoNeuTs automated reconstruction software, currently capable of fully reconstructing the muon and finding the event vertex in neutrino interactions.



قيم البحث

اقرأ أيضاً

The neutrino-induced charged-current quasi-elastic (CCQE, $ u_l+nto l^-+p$ or $bar u_l+pto l^++n$) interaction is the most abundant interaction around 1 GeV, and it is the most fundamental channel to study neutrino oscillations. Recently, MiniBooNE p ublished both muon neutrino and muon anti-neutrino double differential cross sections on carbon. In this review, we describe the details of these analyses and include some historical remarks.
The largest sample ever recorded of $ umub$ charged-current quasi-elastic (CCQE, $ umub + p to mup + n$) candidate events is used to produce the minimally model-dependent, flux-integrated double-differential cross section $frac{d^{2}sigma}{dT_mu duz} $ for $ umub$ incident on mineral oil. This measurement exploits the unprecedented statistics of the MiniBooNE anti-neutrino mode sample and provides the most complete information of this process to date. Also given to facilitate historical comparisons are the flux-unfolded total cross section $sigma(E_ u)$ and single-differential cross section $frac{dsigma}{dqsq}$ on both mineral oil and on carbon by subtracting the $ umub$ CCQE events on hydrogen. The observed cross section is somewhat higher than the predicted cross section from a model assuming independently-acting nucleons in carbon with canonical form factor values. The shape of the data are also discrepant with this model. These results have implications for intra-nuclear processes and can help constrain signal and background processes for future neutrino oscillation measurements.
226 - K. Abe , J. Adam , H. Aihara 2015
We report a measurement of the $ u_mu$ charged current quasi-elastic cross-sections on carbon in the T2K on-axis neutrino beam. The measured charged current quasi-elastic cross-sections on carbon at mean neutrino energies of 1.94 GeV and 0.93 GeV are $(11.95pm 0.19(stat.)_{-1.47}^{+1.82} (syst.))times 10^{-39}mathrm{cm}^2/mathrm{neutron}$ and $(10.64pm 0.37(stat.)_{-1.65}^{+2.03} (syst.))times 10^{-39}mathrm{cm}^2/mathrm{neutron}$, respectively. These results agree well with the predictions of neutrino interaction models. In addition, we investigated the effects of the nuclear model and the multi-nucleon interaction.
We report a measurement of the flux-averaged neutral-current elastic differential cross section for neutrinos scattering on mineral oil (CH$_2$) as a function of four-momentum transferred squared. It is obtained by measuring the kinematics of recoili ng nucleons with kinetic energy greater than 50~MeV which are readily detected in MiniBooNE. This differential cross-section distribution is fit with fixed nucleon form factors apart from an axial mass, $M_{A}$, that provides a best fit for $M_A= 1.39pm0.11$~GeV. Additionally, single protons with kinetic energies above 350 MeV can be distinguished from neutrons and multiple nucleon events. Using this marker, the strange quark contribution to the neutral-current axial vector form factor at $Q^2 = 0$, $Delta s$, is found to be $Delta s=0.08pm0.26$.
Neutral current (NC) interactions of atmospheric neutrinos on oxygen form one of the major backgrounds in the search for supernova relic neutrinos with water-based Cherenkov detectors. The NC channel is dominated by neutrino quasi-elastic (NCQE) scat tering off nucleons inside $^{16}$O nuclei. In this paper we report the first measurement of NCQE cross section using atmospheric neutrinos at Super-Kamiokande (SK). The measurement used 2,778 live days of SK-IV data with a fiducial volume of 22.5 kiloton water. Within the visible energy window of 7.5-29.5 MeV, we observed $117$ events compared to the expected $71.9$ NCQE signal and $53.1$ background events. Weighted by the atmospheric neutrino spectrum from 160 MeV to 10 GeV, the flux averaged NCQE cross section is measured to be $(1.01pm0.17(text{stat.})^{+0.78}_{-0.30}(text{sys.}))times10^{-38}$ cm$^2$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا