ترغب بنشر مسار تعليمي؟ اضغط هنا

Stochastic shear thickening fluids: Strong convergence of the Galerkin approximation and the energy equality

59   0   0.0 ( 0 )
 نشر من قبل Nobuo Yoshida
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English
 تأليف Nobuo Yoshida




اسأل ChatGPT حول البحث

We consider a stochastic partial differential equation (SPDE) which describes the velocity field of a viscous, incompressible non-Newtonian fluid subject to a random force. Here, the extra stress tensor of the fluid is given by a polynomial of degree p-1 of the rate of strain tensor, while the colored noise is considered as a random force. We focus on the shear thickening case, more precisely, on the case $pin [1+{frac{d}{2}},{frac{2d}{d-2}})$, where d is the dimension of the space. We prove that the Galerkin scheme approximates the velocity field in a strong sense. As a consequence, we establish the energy equality for the velocity field.


قيم البحث

اقرأ أيضاً

We propose and analyze novel adaptive algorithms for the numerical solution of elliptic partial differential equations with parametric uncertainty. Four different marking strategies are employed for refinement of stochastic Galerkin finite element ap proximations. The algorithms are driven by the energy error reduction estimates derived from two-level a posteriori error indicators for spatial approximations and hierarchical a posteriori error indicators for parametric approximations. The focus of this work is on the mathematical foundation of the adaptive algorithms in the sense of rigorous convergence analysis. In particular, we prove that the proposed algorithms drive the underlying energy error estimates to zero.
In this paper, we consider the averaging principle for a class of McKean-Vlasov stochastic differential equations with slow and fast time-scales. Under some proper assumptions on the coefficients, we first prove that the slow component strongly conve rges to the solution of the corresponding averaged equation with convergence order $1/3$ using the approach of time discretization. Furthermore, under stronger regularity conditions on the coefficients, we use the technique of Poisson equation to improve the order to $1/2$, which is the optimal order of strong convergence in general.
71 - Romain Mari , Ryohei Seto 2019
The origin of the abrupt shear thickening observed in some dense suspensions has been recently argued to be a transition from frictionless (lubricated) to frictional interactions between immersed particles. The Wyart-Cates rheological model, built on this scenario, introduced the concept of fraction of frictional contacts $f$ as the relevant order parameter for the shear thickening transition. Central to the model is the equation-of-state relating $f$ to the applied stress $sigma$, which is directly linked to the distribution of the normal components of non-hydrodynamics interparticle forces. Here, we develop a model for this force distribution, based on the so-called $q$-model that we borrow from granular physics. This model explains the known $f(sigma)$ in the simple case of sphere contacts displaying only sliding friction, but also predicts strong deviation from this usual form when stronger kinds of constraints are applied on relative motion. We verify these predictions in the case of contacts with rolling friction, in particular a broadening of the stress range over which shear thickening occurs. We finally discuss how a similar approach can be followed to predict $f(sigma)$ in systems with other variations from the canonical system of monodisperse spheres with sliding friction, in particular the case of large bidispersity.
315 - Abdoulaye Fall 2012
We study the rheology of cornstarch suspensions, a non-Brownian particle system that exhibits discontinuous shear thickening. Using magnetic resonance imaging (MRI), the local properties of the flow are obtained by the determination of local velocity profiles and concentrations in a Couette cell. For low rotational rates, we observe shear localization characteristic of yield stress fluids. When the overall shear rate is increased, the width of the sheared region increases. The discontinuous shear thickening is found to set in at the end of this shear localization regime when all of the fluid is sheared: the existence of a nonflowing region, thus, seems to prevent or delay shear thickening. Macroscopic observations using different measurement geometries show that the smaller the gap of the shear cell, the lower the shear rate at which shear thickening sets in. We, thus, propose that the discontinuous shear thickening of cornstarch suspensions is a consequence of dilatancy: the system under flow attempts to dilate but instead undergoes a jamming transition, because it is confined. This proposition is confirmed by an independent measurement of the dilation of the suspension as a function of the shear rate. It is also explains the MRI observations: when flow is localized, the nonflowing region plays the role of a dilatancy reservoir which allows the material to be sheared without jamming.
We consider a stochastic partial differential equation (SPDE) which describes the velocity field of a viscous, incompressible non-Newtonian fluid subject to a random force. Here the extra stress tensor of the fluid is given by a polynomial of degree $p-1$ of the rate of strain tensor, while the colored noise is considered as a random force. We investigate the existence and the uniqueness of weak solutions to this SPDE.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا