ترغب بنشر مسار تعليمي؟ اضغط هنا

Convergence of adaptive stochastic Galerkin FEM

192   0   0.0 ( 0 )
 نشر من قبل Michele Ruggeri
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose and analyze novel adaptive algorithms for the numerical solution of elliptic partial differential equations with parametric uncertainty. Four different marking strategies are employed for refinement of stochastic Galerkin finite element approximations. The algorithms are driven by the energy error reduction estimates derived from two-level a posteriori error indicators for spatial approximations and hierarchical a posteriori error indicators for parametric approximations. The focus of this work is on the mathematical foundation of the adaptive algorithms in the sense of rigorous convergence analysis. In particular, we prove that the proposed algorithms drive the underlying energy error estimates to zero.

قيم البحث

اقرأ أيضاً

Stochastic Galerkin methods for non-affine coefficient representations are known to cause major difficulties from theoretical and numerical points of view. In this work, an adaptive Galerkin FE method for linear parametric PDEs with lognormal coeffic ients discretized in Hermite chaos polynomials is derived. It employs problem-adapted function spaces to ensure solvability of the variational formulation. The inherently high computational complexity of the parametric operator is made tractable by using hierarchical tensor representations. For this, a new tensor train format of the lognormal coefficient is derived and verified numerically. The central novelty is the derivation of a reliable residual-based a posteriori error estimator. This can be regarded as a unique feature of stochastic Galerkin methods. It allows for an adaptive algorithm to steer the refinements of the physical mesh and the anisotropic Wiener chaos polynomial degrees. For the evaluation of the error estimator to become feasible, a numerically efficient tensor format discretization is developed. Benchmark examples with unbounded lognormal coefficient fields illustrate the performance of the proposed Galerkin discretization and the fully adaptive algorithm.
The paper considers a class of parametric elliptic partial differential equations (PDEs), where the coefficients and the right-hand side function depend on infinitely many (uncertain) parameters. We introduce a two-level a posteriori estimator to con trol the energy error in multilevel stochastic Galerkin approximations for this class of PDE problems. We prove that the two-level estimator always provides a lower bound for the unknown approximation error, while the upper bound is equivalent to a saturation assumption. We propose and empirically compare three adaptive algorithms, where the structure of the estimator is exploited to perform spatial refinement as well as parametric enrichment. The paper also discusses implementation aspects of computing multilevel stochastic Galerkin approximations.
A linear PDE problem for randomly perturbed domains is considered in an adaptive Galerkin framework. The perturbation of the domains boundary is described by a vector valued random field depending on a countable number of random variables in an affin e way. The corresponding Karhunen-Lo`eve expansion is approximated by the pivoted Cholesky decomposition based on a prescribed covariance function. The examined high-dimensional Galerkin system follows from the domain mapping approach, transferring the randomness from the domain to the diffusion coefficient and the forcing. In order to make this computationally feasible, the representation makes use of the modern tensor train format for the implicit compression of the problem. Moreover, an a posteriori error estimator is presented, which allows for the problem-dependent iterative refinement of all discretization parameters and the assessment of the achieved error reduction. The proposed approach is demonstrated in numerical benchmark problems.
The numerical approximation of the solution to a stochastic partial differential equation with additive spatial white noise on a bounded domain is considered. The differential operator is assumed to be a fractional power of an integer order elliptic differential operator. The solution is approximated by means of a finite element discretization in space and a quadrature approximation of an integral representation of the fractional inverse from the Dunford-Taylor calculus. For the resulting approximation, a concise analysis of the weak error is performed. Specifically, for the class of twice continuously Frechet differentiable functionals with second derivatives of polynomial growth, an explicit rate of weak convergence is derived, and it is shown that the component of the convergence rate stemming from the stochasticity is doubled compared to the corresponding strong rate. Numerical experiments for different functionals validate the theoretical results.
Discontinuous Galerkin (DG) methods for hyperbolic partial differential equations (PDEs) with explicit time-stepping schemes, such as strong stability-preserving Runge-Kutta (SSP-RK), suffer from time-step restrictions that are significantly worse th an what a simple Courant-Friedrichs-Lewy (CFL) argument requires. In particular, the maximum stable time-step scales inversely with the highest degree in the DG polynomial approximation space and becomes progressively smaller with each added spatial dimension. In this work we introduce a novel approach that we have dubbed the regionally implicit discontinuous Galerkin (RIDG) method to overcome these small time-step restrictions. The RIDG method is based on an extension of the Lax-Wendroff DG (LxW-DG) method, which previously had been shown to be equivalent to a predictor-corrector approach, where the predictor is a locally implicit spacetime method (i.e., the predictor is something like a block-Jacobi update for a fully implicit spacetime DG method). The corrector is an explicit method that uses the spacetime reconstructed solution from the predictor step. In this work we modify the predictor to include not just local information, but also neighboring information. With this modification we show that the stability is greatly enhanced; in particular, we show that we are able to remove the polynomial degree dependence of the maximum time-step and show how this extends to multiple spatial dimensions. A semi-analytic von Neumann analysis is presented to theoretically justify the stability claims. Convergence and efficiency studies for linear and nonlinear problems in multiple dimensions are accomplished using a MATLAB code that can be freely downloaded.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا