ترغب بنشر مسار تعليمي؟ اضغط هنا

Fourier transformation and response functions

65   0   0.0 ( 0 )
 نشر من قبل Giorgio Sangiovanni
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We improve on Fourier transforms (FT) between imaginary time $tau$ and imaginary frequency $omega_n$ used in certain quantum cluster approaches using the Hirsch-Fye method. The asymptotic behavior of the electron Greens function can be improved by using a sumrule boundary condition for a spline. For response functions a two-dimensional FT of a singular function is required. We show how this can be done efficiently by splitting off a one-dimensional part containing the singularity and by performing a semi-analytical FT for the remaining more innocent two-dimensional part.


قيم البحث

اقرأ أيضاً

138 - E. Orignac , R. Citro 2012
We derive an analytic expression for the zero temperature Fourier transform of the density-density correlation function of a multicomponent Luttinger liquid with different velocities. By employing Schwinger identity and a generalized Feynman identity exact integral expressions are derived, and approximate analytical forms are given for frequencies close to each component singularity. We find power-like singularities and compute the corresponding exponents. Numerical results are shown for the case of three components.
Building on previous developments, we show that the Diagrammatic Monte Carlo technique allows to compute finite temperature response functions directly on the real-frequency axis within any field-theoretical formulation of the interacting fermion pro blem. There are no limitations on the type and nature of the systems action or whether partial summation and self-consistent treatment of certain diagram classes are used. In particular, by eliminating the need for numerical analytic continuation from a Matsubara representation, our scheme allows to study spectral densities of arbitrary complexity with controlled accuracy in models with frequency-dependent effective interactions. For illustrative purposes we consider the problem of the plasmon line-width in a homogeneous electron gas (jellium).
We develop an efficient approach for computing two-particle response functions and interaction vertices for multiorbital strongly correlated systems based on fluctuation around rotationally-invariant slave-boson saddle-point. The method is applied to the degenerate three-orbital Hubbard-Kanamori model for investigating the origin of the s-wave orbital antisymmetric spin-triplet superconductivity in the Hunds metal regime, previously found in the dynamical mean-field theory studies. By computing the pairing interaction considering the particle-particle and the particle-hole scattering channels, we identify the mechanism leading to the pairing instability around Hunds metal crossover arises from the particle-particle channel, containing the local electron pair fluctuation between different particle-number sectors of the atomic Hilbert space. On the other hand, the particle-hole spin fluctuations induce the s-wave pairing instability before entering the Hunds regime. Our approach paves the way for investigating the pairing mechanism in realistic correlated materials.
125 - Johann Summhammer 1997
The scheme of Clauser and Dowling (Phys. Rev. A 53, 4587 (1996)) for factoring $N$ by means of an N-slit interference experiment is translated into an experiment with a single Mach-Zehnder interferometer. With dispersive phase shifters the ratio of t he coherence length to wavelength limits the numbers that can be factored. A conservative estimate permits $N approx 10^7$. It is furthermore shown, that sine and cosine Fourier coefficients of a real periodic function can be obtained with such an interferometer.
In nonadditive systems, like small systems or like long-range interacting systems even in the thermodynamic limit, ensemble inequivalence can be related to the occurrence of negative response functions, this in turn being connected with anomalous con cavity properties of the thermodynamic potentials associated to the various ensembles. We show how the type and number of negative response functions depend on which of the quantities E, V and N (energy, volume and number of particles) are constrained in the ensemble. In particular, we consider the unconstrained ensemble in which E, V and N fluctuate, physically meaningful only for nonadditive systems. In fact, its partition function is associated to the replica energy, a thermodynamic function that identically vanishes when additivity holds, but that contains relevant information in nonadditive systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا