ﻻ يوجد ملخص باللغة العربية
Based on the high sensitivity of Compton scattering off ultra relativistic electrons, the possibility of anisotropies in the speed of light is investigated. The result discussed in this contribution is based on the gamma-ray beam of the ESRFs GRAAL facility (Grenoble, France) and the search for sidereal variations in the energy of the Compton-edge photons. The absence of oscillations yields the two-sided limit of 1.6 x 10^{-14} at 95 % confidence level on a combination of photon and electron coefficients of the minimal Standard Model Extension (mSME). This new constraint provides an improvement over previous bounds by one order of magnitude.
The possibility of anisotropies in the speed of light relative to the limiting speed of electrons is considered. The absence of sidereal variations in the energy of Compton-edge photons at the ESRFs GRAAL facility constrains such anisotropies represe
The energy measurement uncertainty of circular electron positron collider (CEPC) beam must be less than $10 mathrm{MeV}$ to accurately measure the mass of the Higgs/W/Z boson. A new microwave-beam Compton backscattering method is proposed to measure
The dark matter puzzle is one of the most important fundamental physics questions in 21 century. There is no doubt that solving the puzzle will be a new milestone for human beings in the way of deeper understanding the mother nature. Here we propose
The cross section of atomic electron Compton scattering $gamma + e rightarrow gamma^prime + e^prime $ was measured in the 4.40--5.475 GeV photon beam energy region by the {em PrimEx} collaboration at Jefferson Lab with an accuracy of 2% and less. The
We report on the highest precision yet achieved in the measurement of the polarization of a low energy, $mathcal{O}$(1 GeV), electron beam, accomplished using a new polarimeter based on electron-photon scattering, in Hall~C at Jefferson Lab. A number