ترغب بنشر مسار تعليمي؟ اضغط هنا

Radio interferometric observations of two core-dominated triple radio sources at z>3

72   0   0.0 ( 0 )
 نشر من قبل David Cseh
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Aims. We selected two radio quasars (J1036+1326 and J1353+5725) based on their 1.4-GHz radio structure, which is dominated by a bright central core and a pair of weaker and nearly symmetric lobes at ~10 angular separation. They are optically identified in the Sloan Digital Sky Survey (SDSS) at spectroscopic redshifts z>3. We investigate the possibility that their core-dominated triple morphology can be a sign of restarted radio activity in these quasars, involving a significant repositioning of the radio jet axis. Methods. We present the results of high-resolution radio imaging observations of J1036+1326 and J1353+5725, performed with the European Very Long Baseline Interferometry (VLBI) Network (EVN) at 1.6 GHz. These data are supplemented by archive observations from the Very Large Array (VLA).We study the large- and small-scale radio structures and the brightness temperatures, then estimate relativistic beaming parameters. Results. We show that the central emission region of these two high-redshift, core-dominated triple sources is compact but resolved at ~10 milli-arcsecond resolution. We find that it is not necessary to invoke large misalignment between the VLBI jet and the large-scale radio structure to explain the observed properties of the sources.

قيم البحث

اقرأ أيضاً

81 - A. Marecki 2005
Signatures of the re-occurrence of activity in radio-loud AGNs, indicated either by the so-called double-double or X-shaped structures, have been observed in a number of radio sources. All such objects known to date have linear sizes of the order of a megaparsec. A number of the sources that are appreciably more compact than this, but that exhibit hints of a past phase of activity, were found in the VLA FIRST survey. Their structures show symmetric relic lobes straddling relatively bright, unresolved cores. Observations of the cores of 15 such structures with MERLIN at 5 GHz have shown that four of them are doubles or core-jets on the subarcsecond scale. Misalignments of Delta PA ga 30 degr. between the axis of the inner structure and the line connecting the fitted maxima of the arcminute-scale relic lobes are clearly visible in three of the four sources. From these results, we can infer that a rapid repositioning of the central engine in each of these three radio sources is the most plausible interpretation of the observed morphology and that a merger is most likely the original cause of such a repositioning. In the case of TXS 1033+026, the optical image extracted from the SDSS archives clearly suggests that two objects separated by only 2.7 kpc (projected onto the sky plane) are indeed merging. The inner parts of TXS 0818+214 and TXS 1312+563 could be interpreted as double-lobed, and consequently, these sources could be of the double-double type; but further multifrequency observations are necessary to provide support for such an interpretation.
We combine the latest datasets obtained with different surveys to study the frequency dependence of polarized emission coming from Extragalactic Radio Sources (ERS). We consider data over a very wide frequency range starting from $1.4$ GHz up to $217 $ GHz. This range is particularly interesting since it overlaps the frequencies of the current and forthcoming Cosmic Microwave Background (cmb) experiments. Current data suggest that at high radio frequencies, ($ u geq 20$ GHz) the fractional polarization of ERS does not depend on the total flux density. Conversely, recent datasets indicate a moderate increase of polarization fraction as a function of frequency, physically motivated by the fact that Faraday depolarization is expected to be less relevant at high radio-frequencies. We compute ERS number counts using updated models based on recent data, and we forecast the contribution of unresolved ERS in CMB polarization spectra. Given the expected sensitivities and the observational patch sizes of forthcoming cmb experiments about $sim 200 $ ( up to $sim 2000 $ ) polarized ERS are expected to be detected. Finally, we assess that polarized ERS can contaminate the cosmological B-mode polarization if the tensor-to-scalar ratio is $r< 0.05$ and they have to be robustly controlled to de-lens cmb B-modes at the arcminute angular scales.
128 - Matt J. Jarvis 2009
In this letter we report the discovery of a z=4.88 radio galaxy discovered with a new technique which does not rely on pre-selection of a sample based on radio properties such as steep-spectral index or small angular size. This radio galaxy was disco vered in the Elais-N2 field and has a spectral index of alpha = 0.75, i.e. not ultra-steep spectrum. It also has a luminosity consistent with being drawn from the break of the radio luminosity function and can therefore be considered as a typical radio galaxy. Using the Spitzer-SWIRE data over this field we find that the host galaxy is consistent with being similarly massive to the lower redshift powerful radio galaxies (~1-3L*). We note however, that at z=4.88 the H-alpha line is redshifted into the IRAC 3.6micron filter and some of the flux in this band may be due to this rather than stellar continuum emission. The discovery of such a distant radio source from our initial spectroscopic observations demonstrate the promise of our survey for finding the most distant radio sources.
193 - Rocco Coppejans 2017
High-redshift quasars are important to study galaxy and active galactic nuclei (AGN) evolution, test cosmological models, and study supermassive black hole growth. Optical searches for high-redshift sources have been very successful, but radio search es are not hampered by dust obscuration and should be more effective at finding sources at even higher redshifts. Identifying high-redshift sources based on radio data is, however, not trivial. Here we report on new multi-frequency Giant Metrewave Radio Telescope (GMRT) observations of eight z>4.5 sources previously studied at high angular resolution with very long baseline interferometry (VLBI). Combining these observations with those from the literature, we construct broad-band radio spectra of all 30 z>4.5 sources that have been observed with VLBI. In the sample we found flat, steep and peaked spectra in approximately equal proportions. Despite several selection effects, we conclude that the z>4.5 VLBI (and likely also non-VLBI) sources have diverse spectra and that only about a quarter of the sources in the sample have flat spectra. Previously, the majority of high-redshift radio sources were identified based on their ultra-steep spectra (USS). Recently a new method has been proposed to identify these objects based on their megahertz-peaked spectra (MPS). Neither method would have identified more than 18% of the high-redshift sources in this sample. More effective methods are necessary to reliably identify complete samples of high-redshift sources based on radio data.
Radio halos are diffuse synchrotron sources on scales of ~1 Mpc that are found in merging clusters of galaxies, and are believed to be powered by electrons re-accelerated by the merger-driven turbulence. We present measurements of extended radio emis sion on similarly large scales in two clusters of galaxies hosting cool cores: Abell 2390 and Abell 2261. The analysis is based on interferometric imaging with the JVLA, VLA and GMRT. We present detailed radio images of the targets, subtract the compact emission components, and measure the spectral indices for the diffuse components. The radio emission in A2390 extends beyond a known sloshing-like brightness discontinuity, and has a very steep in-band spectral slope at 1.5 GHz that is similar to some known ultra-steep spectrum radio halos. The diffuse signal in A2261 is more extended than in A2390 but has lower luminosity. X-ray morphological indicators, derived from XMM-Newton X-ray data, place these clusters in the category of relaxed or regular systems, although some asymmetric features that can indicate past minor mergers are seen in the X-ray brightness images. If these two Mpc-scale radio sources are categorized as giant radio halos, they question the common assumption of radio halos occurring exclusively in clusters undergoing violent merging activity, in addition to commonly used criteria in distinguishing between radio halos and mini-halos.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا