ترغب بنشر مسار تعليمي؟ اضغط هنا

Mpc-scale diffuse radio emission in two massive cool-core clusters of galaxies

75   0   0.0 ( 0 )
 نشر من قبل Martin Sommer
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Radio halos are diffuse synchrotron sources on scales of ~1 Mpc that are found in merging clusters of galaxies, and are believed to be powered by electrons re-accelerated by the merger-driven turbulence. We present measurements of extended radio emission on similarly large scales in two clusters of galaxies hosting cool cores: Abell 2390 and Abell 2261. The analysis is based on interferometric imaging with the JVLA, VLA and GMRT. We present detailed radio images of the targets, subtract the compact emission components, and measure the spectral indices for the diffuse components. The radio emission in A2390 extends beyond a known sloshing-like brightness discontinuity, and has a very steep in-band spectral slope at 1.5 GHz that is similar to some known ultra-steep spectrum radio halos. The diffuse signal in A2261 is more extended than in A2390 but has lower luminosity. X-ray morphological indicators, derived from XMM-Newton X-ray data, place these clusters in the category of relaxed or regular systems, although some asymmetric features that can indicate past minor mergers are seen in the X-ray brightness images. If these two Mpc-scale radio sources are categorized as giant radio halos, they question the common assumption of radio halos occurring exclusively in clusters undergoing violent merging activity, in addition to commonly used criteria in distinguishing between radio halos and mini-halos.



قيم البحث

اقرأ أيضاً

Cool core galaxy clusters are considered to be dynamically relaxed clusters with regular morphology and highly X-ray luminous central region. However, cool core clusters can also be sites for merging events that exhibit cold fronts in X-ray and mini- halos in radio. We present recent radio/X-ray observations of the Phoenix Cluster or SPT-CL J2344-4243 at the redshift of $z=0.596$. Using archival {it Chandra} X-ray observations, we detect spiraling cool gas around the cluster core as well as discover two cold fronts near the core. It is perhaps the most distant galaxy cluster to date known to host cold fronts. Also, we present JVLAfootnote{Jansky Very Large Array url{https://science.nrao.edu/facilities/vla}} 1.52 GHz observations of the minihalo, previously discovered at 610 MHz with GMRTfootnote{Giant Metrewave Radio Telescope url{http://www.gmrt.ncra.tifr.res.in}} observations in the center of the Phoenix galaxy cluster. The minihalo flux density at 1.52 GHz is $9.65 pm 0.97$ mJy with the spectral index between 610 MHz and 1.52 GHz being $-0.98 pm 0.16$footnote{$S_{ u} = u^{alpha}$ where $S_{ u}$}. A possible origin of these radio sources is turbulence induced by sloshing of the gas in the cluster core.
65 - David J. Barnes 2017
The thermodynamic structure of hot gas in galaxy clusters is sensitive to astrophysical processes and typically difficult to model with galaxy formation simulations. We explore the fraction of cool-core (CC) clusters in a large sample of $370$ cluste rs from IllustrisTNG, examining six common CC definitions. IllustrisTNG produces continuous CC criteria distributions, the extremes of which are classified as CC and non-cool-core (NCC), and the criteria are increasingly correlated for more massive clusters. At $z=0$, the CC fractions for $2$ criteria are in reasonable agreement with the observed fractions but the other $4$ CC fractions are lower than observed. This result is partly driven by systematic differences between the simulated and observed gas fraction profiles. The simulated CC fractions with redshift show tentative agreement with the observed fractions, but linear fits demonstrate that the simulated evolution is steeper than observed. The conversion of CCs to NCCs appears to begin later and act more rapidly in the simulations. Examining the fraction of CCs and NCCs defined as relaxed we find no evidence that CCs are more relaxed, suggesting that mergers are not solely responsible for disrupting CCs. A comparison of the median thermodynamic profiles defined by different CC criteria shows that the extent to which they evolve in the cluster core is dependent on the CC criteria. We conclude that the thermodynamic structure of galaxy clusters in IllustrisTNG shares many similarities with observations, but achieving better agreement most likely requires modifications of the underlying galaxy formation model.
We use the IllustrisTNG cosmological hydrodynamical simulation to study the formation of ultra-diffuse galaxies (UDGs) in galaxy clusters. We supplement the simulations with a realistic mass-size relation for galaxies at the time of infall into the c luster, as well as an analytical model to describe the tidally-induced evolution of their stellar mass, velocity dispersion and size. The model assumes cuspy NFW halos and, contrary to recent claims, has no difficulty reproducing the observed number of UDGs in clusters. Our results further suggest that the UDG population consists of a mixture of normal low surface brightness galaxies such as those found in the field (born UDGs, or B-UDGs), as well as a distinct population that owe their large size and low surface brightness to the effects of cluster tides (tidal, or T-UDGs). The simulations indicate that T-UDGs entered the cluster earlier and should be more prevalent than B-UDGs near the cluster centres. T-UDGs should also have, at given stellar mass, lower velocity dispersion, higher metallicities, and lower dark matter content than B-UDGs. Our results suggest that systems like DF-44 are consistent with having been born as UDGs, while others such as DF2, DF4 and VLSB-D are possibly extreme T-UDG examples.
We used broad-band imaging data for 10 cool-core brightest cluster galaxies (BCGs) and conducted a Bayesian analysis using stellar population synthesis to determine the likely properties of the constituent stellar populations. Determination of ongoin g star formation rates (SFRs), in particular, has a direct impact on our understanding of the cooling of the intracluster medium (ICM), star formation and AGN-regulated feedback. Our model consists of an old stellar population and a series of young stellar components. We calculated marginalized posterior probability distributions for various model parameters and obtained 68% plausible intervals from them. The 68% plausible interval on the SFRs is broad, owing to a wide range of models that are capable of fitting the data, which also explains the wide dispersion in the star formation rates available in the literature. The ranges of possible SFRs are robust and highlight the strength in such a Bayesian analysis. The SFRs are correlated with the X-ray mass deposition rates (the former are factors of 4 to 50 lower than the latter), implying a picture where the cooling of the ICM is a contributing factor to star formation in cool-core BCGs. We find that 9 out of 10 BCGs have been experiencing starbursts since 6 Gyr ago. While four out of 9 BCGs seem to require continuous SFRs, 5 out of 9 seem to require periodic star formation on intervals ranging from 20 Myr to 200 Myr. This time scale is similar to the cooling-time of the ICM in the central (< 5 kpc) regions.
205 - Joana S. Santos 2010
Cool-core clusters are characterized by strong surface brightness peaks in the X-ray emission from the Intra Cluster Medium (ICM). This phenomenon is associated with complex physics in the ICM and has been a subject of intense debate and investigatio n in recent years. In order to quantify the evolution in the cool-core cluster population, we robustly measure the cool-core strength in a local, representative cluster sample, and in the largest sample of high-redshift clusters available to date. We use high-resolution Chandra data of three representative cluster samples spanning different redshift ranges: (i) the local sample from the 400 SD survey with median z = 0.08, (ii) the high redshift sample from the 400 SD Survey with median z=0.59, and (iii) 15 clusters drawn from the RDCS and the WARPS, with median z = 0.83. Our analysis is based on the measurement of the surface brightness concentration, c_SB, which allows us to characterize the cool-core strength in low signal-to-noise data. We also obtain gas density profiles to derive cluster central cooling times and entropy. In addition to the X-ray analysis, we search for radio counterparts associated with the cluster cores. We find a statistically significant difference in the c_SB distributions of the two high-z samples, pointing towards a lack of concentrated clusters in the 400 SD high-z sample. Taking this into account, we confirm a negative evolution in the fraction of cool-core clusters with redshift, in particular for very strong cool-cores. This result is validated by the central entropy and central cooling time, which show strong anti-correlations with c_SB. However, the amount of evolution is significantly smaller than previously claimed, leaving room for a large population of well formed cool-cores at z~1.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا