ﻻ يوجد ملخص باللغة العربية
The RENO experiment has been in operation since August 2011 to measure reactor antineutrino disappearance using identical near and far detectors. For accurate measurements of neutrino mixing parameters and efficient data taking, it is crucial to monitor and control the detector in real time. Environmental conditions also need to be monitored for stable operation of detectors as well as for safety reasons. In this article, we report the design, hardware, operation, and performance of the slow control system.
The proposed Mitchell Institute Neutrino Experiment at Reactor (MINER) experiment at the Nuclear Science Center at Texas A&M University will search for coherent elastic neutrino-nucleus scattering within close proximity (about 2 meters) of a 1 MW TRI
The Daya Bay Reactor Neutrino Experiment has measured the last unknown neutrino mixing angle, {theta}13, to be non-zero at the 7.7{sigma} level. This is the most precise measurement to {theta}13 to date. To further enhance the understanding of the re
We describe the design, installation, and operation of a purification system that is able to provide large volumes of high purity ASTM (D1193-91) Type-I water to a high energy physics experiment. The water environment is underground in a lightly seal
The SoLid experiment, short for Search for Oscillations with a Lithium-6 detector, is a new generation neutrino experiment which tries to address the key challenges for high precision reactor neutrino measurements at very short distances from a react
The Daya Bay experiment was the first to report simultaneous measurements of reactor antineutrinos at multiple baselines leading to the discovery of $bar{ u}_e$ oscillations over km-baselines. Subsequent data has provided the worlds most precise meas