ترغب بنشر مسار تعليمي؟ اضغط هنا

Complexes and Exactness of certain Artin Groups

125   0   0.0 ( 0 )
 نشر من قبل Graham A. Niblo
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In his work on the Novikov conjecture, Yu introduced Property $A$ as a readily verified criterion implying coarse embeddability. Studied subsequently as a property in its own right, Property $A$ for a discrete group is known to be equivalent to exactness of the reduced group $C^*$-algebra and to the amenability of the action of the group on its Stone-Cech compactification. In this paper we study exactness for groups acting on a finite dimensional $CAT(0)$ cube complex. We apply our methods to show that Artin groups of type FC are exact. While many discrete groups are known to be exact the question of whether every Artin group is exact remains open.



قيم البحث

اقرأ أيضاً

121 - Kasia Jankiewicz 2020
We show that many 2-dimensional Artin groups are residually finite. This includes 3-generator Artin groups with labels $geq$ 3 where either at least one label is even, or at most one label is equal 3. As a first step towards residual finiteness we sh ow that these Artin groups, and many more, split as free products with amalgamation or HNN extensions of finite rank free groups. Among others, this holds for all large type Artin groups with defining graph admitting an orientation, where each simple cycle is directed.
We give some new characterizations of exactness for locally compact second countable groups. In particular, we prove that a locally compact second countable group is exact if and only if it admits a topologically amenable action on a compact Hausdorf f space. This answers an open question by Anantharaman-Delaroche.
The Tits Conjecture, proved by Crisp and Paris, states that squares of the standard generators of any Artin group generate an obvious right-angled Artin subgroup. We consider a larger set of elements consisting of all the centers of the irreducible s pherical special subgroups of the Artin group, and conjecture that sufficiently large powers of those elements generate an obvious right-angled Artin subgroup. This alleged right-angled Artin subgroup is in some sense as large as possible; its nerve is homeomorphic to the nerve of the ambient Artin group. We verify this conjecture for the class of locally reducible Artin groups, which includes all $2$-dimensional Artin groups, and for spherical Artin groups of any type other than $E_6$, $E_7$, $E_8$. We use our results to conclude that certain Artin groups contain hyperbolic surface subgroups, answering questions of Gordon, Long and Reid.
146 - Kasia Jankiewicz 2021
We show that a triangle Artin group $text{Art}_{MNP}$ where $Mleq Nleq P$ splits as an amalgamated product or an HNN extension of finite rank free groups, provided that either $M>2$, or $N>3$. We also prove that all even three generator Artin groups are residually finite.
114 - M. Hull 2021
We show that if a right-angled Artin group $A(Gamma)$ has a non-trivial, minimal action on a tree $T$ which is not a line, then $Gamma$ contains a separating subgraph $Lambda$ such that $A(Lambda)$ stabilizes an edge in $T$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا