ترغب بنشر مسار تعليمي؟ اضغط هنا

Stimulation of the fluctuation superconductivity by the PT-symmetry

41   0   0.0 ( 0 )
 نشر من قبل Nikolai M. Chtchelkatchev
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss fluctuations near the second order phase transition where the free energy has an additional non-Hermitian term. The spectrum of the fluctuations changes when the odd-parity potential amplitude exceeds the critical value corresponding to the PT-symmetry breakdown in the topological structure of the Hilbert space of the effective non-Hermitian Hamiltonian. We calculate the fluctuation contribution to the differential resistance of a superconducting weak link and find the manifestation of the PT-symmetry breaking in its temperature evolution. We successfully validate our theory by carrying out measurements of far from equilibrium transport in mesoscale-patterned superconducting wires.

قيم البحث

اقرأ أيضاً

A microscopic Hamiltonian reflecting the correct symmetry of $f$-orbitals is proposed to discuss superconductivity in heavy fermion systems. In the orbitally degenerate region in which not only spin fluctuations but also orbital fluctuations develop considerably, cancellation between spin and orbital fluctuations destabilizes $d_{x^{2}-y^{2}}$-wave superconductivity. Entering the non-degenerate region by increasing the crystalline electric field, $d_{x^{2}-y^{2}}$-wave superconductivity mediated by antiferromagnetic spin fluctuations emerges out of the suppression of orbital fluctuations. We argue that the present scenario can be applied to recently discovered superconductors CeTIn$_{5}$ (T=Ir, Rh, and Co).
A new mechanism for superconductivity in the newly discovered Co-based oxide is proposed by using charge fluctuation. A single-band extended Hubbard model on the triangular lattice is studied within random phase approximation. $f$-wave triplet superc onductivity is stabilized in the vicinity of charge-density-wave instability, which is in sharp contrast with the square-lattice case. The physical origin of the realization of the $f$-wave triplet state as well as the relevance to experiments are discussed.
89 - Takemi Yamada , Kaoru Domon , 2018
We investigate the excitonic fluctuation and its mediated superconductivity in the quasi one-dimensional three-chain Hubbard model for Ta$_2$NiSe$_5$ known as a candidate material for the excitonic insulator. In the semiconducting case and the semime tallic case with a small band-overlapping where one conduction ($c$) band and one valence ($f$) band cross the Fermi level, the excitonic fluctuation with $bm{q}=bm{0}$ is enhanced due to the $c$-$f$ Coulomb interaction and diverges towards the uniform excitonic order corresponding to the excitonic insulator. On the other hands, in the semimetallic case with a large band-overlapping where two $c$ bands and one $f$ band cross the Fermi level, the non-uniform excitonic fluctuation with $bm{q} eq bm{0}$ corresponding to the nesting vector between the $c$ and $f$ Fermi-surfaces (FSs) becomes dominant and results in the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) excitonic order characterized by the condensation of excitons with finite center-of-mass momentum $bm{q}$. Near the instability, the largely enhanced excitonic fluctuations mediate the $c$-$f$ interband Cooper pairs with finite center-of-mass momentum resulting in the FFLO superconductivity, which is expected to be realized in the semimetallic Ta$_2$NiSe$_5$ under high pressure.
We report on a pressure-induced evolution of exotic superconductivity and spin correlations in CeIr(In$_{1-x}$Cd$_{x}$)$_5$ by means of In-Nuclear-Quadrupole-Resonance (NQR) studies. Measurements of an NQR spectrum and nuclear-spin-lattice-relaxation rate $1/T_1$ have revealed that antiferromagnetism induced by the Cd-doping emerges locally around Cd dopants, but superconductivity is suddenly induced at $T_c$ = 0.7 and 0.9 K at 2.34 and 2.75 GPa, respectively. The unique superconducting characteristics with a large fraction of the residual density of state at the Fermi level that increases with $T_c$ differ from those for anisotropic superconductivity mediated by antiferromagnetic correlations. By incorporating the pressure dependence of the NQR frequency pointing to the valence change of Ce, we suggest that unconventional superconductivity in the CeIr(In$_{1-x}$Cd$_{x}$)$_5$ system may be mediated by valence fluctuations.
In the search for superconductivity in BaAu2Sb2-type monoclinic structure, we have successfully synthesized a new compound BaPt2Bi2, which crystallizes in the space group P21/m (S.G. 11; Pearson symbol mP10) according to a combination of powder and s ingle crystal X-ray diffraction and scanning electron microscopy. Sharp electrical resistivity drop and large diamagnetic magnetization below 2.0 K indicates it owns the superconducting ground state. This makes BaPt2Bi2 the first reported superconductor in mono-clinic BaAu2Sb2-type structure, a previously unappreciated structure for superconductivity. First-principles calculations considering the spin-orbit coupling indicate that Pt-Bi anti-bonding interaction plays a critical role in inducing superconductivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا