ترغب بنشر مسار تعليمي؟ اضغط هنا

Metric trees of generalized roundness one

151   0   0.0 ( 0 )
 نشر من قبل Anthony Weston
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Every finite metric tree has generalized roundness strictly greater than one. On the other hand, some countable metric trees have generalized roundness precisely one. The purpose of this paper is to identify some large classes of countable metric trees that have generalized roundness precisely one. At the outset we consider spherically symmetric trees endowed with the usual combinatorial metric (SSTs). Using a simple geometric argument we show how to determine decent upper bounds on the generalized roundness of finite SSTs that depend only on the downward degree sequence of the tree in question. By considering limits it follows that if the downward degree sequence $(d_{0}, d_{1}, d_{2}...)$ of a SST $(T,rho)$ satisfies $|{j , | , d_{j} > 1 }| = aleph_{0}$, then $(T,rho)$ has generalized roundness one. Included among the trees that satisfy this condition are all complete $n$-ary trees of depth $infty$ ($n geq 2$), all $k$-regular trees ($k geq 3$) and inductive limits of Cantor trees. The remainder of the paper deals with two classes of countable metric trees of generalized roundness one whose members are not, in general, spherically symmetric. The first such class of trees are merely required to spread out at a sufficient rate (with a restriction on the number of leaves) and the second such class of trees resemble infinite combs.



قيم البحث

اقرأ أيضاً

Motivated by the local theory of Banach spaces we introduce a notion of finite representability for metric spaces. This allows us to develop a new technique for comparing the generalized roundness of metric spaces. We illustrate this technique in two different ways by applying it to Banach spaces and metric trees. In the realm of Banach spaces we obtain results such as the following: (1) if $mathcal{U}$ is any ultrafilter and $X$ is any Banach space, then the second dual $X^{astast}$ and the ultrapower $(X)_{mathcal{U}}$ have the same generalized roundness as $X$, and (2) no Banach space of positive generalized roundness is uniformly homeomorphic to $c_{0}$ or $ell_{p}$, $2 < p < infty$. Our technique also leads to the identification of new classes of metric trees of generalized roundness one. In particular, we give the first examples of metric trees of generalized roundness one that have finite diameter. These results on metric trees provide a natural sequel to a paper of Caffarelli, Doust and Weston. In addition, we show that metric trees of generalized roundness one possess special Euclidean embedding properties that distinguish them from all other metric trees.
We obtain several new characterizations of ultrametric spaces in terms of roundness, generalized roundness, strict p-negative type, and p-polygonal equalities (p > 0). This allows new insight into the isometric embedding of ultrametric spaces into Eu clidean spaces. We also consider roundness properties additive metric spaces which are not ultrametric.
Let $Gamma(E)$ be the family of all paths which meet a set $E$ in the metric measure space $X$. The set function $E mapsto AM(Gamma(E))$ defines the $AM$--modulus measure in $X$ where $AM$ refers to the approximation modulus. We compare $AM(Gamma(E)) $ to the Hausdorff measure $comathcal H^1(E)$ of codimension one in $X$ and show that $$comathcal H^1(E) approx AM(Gamma(E))$$ for Suslin sets $E$ in $X$. This leads to a new characterization of sets of finite perimeter in $X$ in terms of the $AM$--modulus. We also study the level sets of $BV$ functions and show that for a.e. $t$ these sets have finite $comathcal H^1$--measure. Most of the results are new also in $mathbb R^n$.
459 - A.G. Aksoy , B. Maurizi 2007
In this paper we examine the relationship between hyperconvex hulls and metric trees. After providing a linking construction for hyperconvex spaces, we show that the four-point property is inherited by the hyperconvex hull, which leads to the theorem that every complete metric tree is hyperconvex. We also consider some extension theorems for these spaces.
153 - Jianbing Cao , Yifeng Xue 2013
In this paper, the problems of perturbation and expression for the Moore--Penrose metric generalized inverses of bounded linear operators on Banach spaces are further studied. By means of certain geometric assumptions of Banach spaces, we first give some equivalent conditions for the Moore--Penrose metric generalized inverse of perturbed operator to have the simplest expression $T^M(I+ delta TT^M)^{-1}$. Then, as an application our results, we investigate the stability of some operator equations in Banach spaces under different type perturbations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا