ترغب بنشر مسار تعليمي؟ اضغط هنا

The effect of density stratification on the resonant absorption of MHD waves in coronal loops

118   0   0.0 ( 0 )
 نشر من قبل Kayoomars Karami
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The standing quasi-modes of the ideal MHD in a zero-$beta$ cylindrical magnetic flux tube that undergoes a longitudinal density stratification and radial density structuring is considered. The radial structuring is assumed to be a linearly varying density profile. Using the relevant connection formulae of the resonant absorption, the dispersion relation for the fast MHD body waves is derived and solved numerically to obtain both the frequencies and damping rates of the fundamental and first-overtone, $k=1,2$ modes of both the kink ($m=1$), and fluting ($m=2$) waves. Where $k$ and $m$ are the longitudinal and azimuthal mode numbers, respectively.



قيم البحث

اقرأ أيضاً

We perform MHD modeling of a single bright coronal loop to include the interaction with a non-uniform magnetic field. The field is stressed by random footpoint rotation in the central region and its energy is dissipated into heating by growing curren ts through anomalous magnetic diffusivity that switches on in the corona above a current density threshold. We model an entire single magnetic flux tube, in the solar atmosphere extending from the high-beta chromosphere to the low-beta corona through the steep transition region. The magnetic field expands from the chromosphere to the corona. The maximum resolution is ~30 km. We obtain an overall evolution typical of loop models and realistic loop emission in the EUV and X-ray bands. The plasma confined in the flux tube is heated to active region temperatures (~3 MK) after ~2/3 hr. Upflows from the chromosphere up to ~100 km/s fill the core of the flux tube to densities above 10^9 cm^-3. More heating is released in the low corona than the high corona and is finely structured both in space and time.
133 - Tongjiang Wang 2018
Recent observations have revealed the ubiquitous presence of magnetohydrodynamic (MHD) waves and oscillations in the solar corona. The aim of this review is to present recent progress in the observational study of four types of wave (or oscillation) phenomena mainly occurring in active region coronal loops, including (i) flare-induced slow mode oscillations, (ii) fast kink mode oscillations, (iii) propagating slow magnetoacoustic waves, and (iv) ubiquitous propagating kink (Alfvenic) waves. This review not only comprehensively outlines various aspects of these waves and coronal seismology, but also highlights the topics that are newly emerging or hotly debated, thus can provide readers a useful guidance on further studies of their interested topics.
101 - Jorn Warnecke 2016
We study the magnetic field and current structure associated with a coronal loop. Through this we investigate to what extent the assumptions of a force-free magnetic field break down and where they might be justified. We analyse a 3D MHD model of the solar corona in an emerging active region with the focus on the structure of the forming coronal loops. The lower boundary of this simulation is taken from a model of an emerging active region. As a consequence of the emerging magnetic flux and the horizontal motions at the surface a coronal loop forms self-consistently. We investigate the current density along magnetic field inside (and outside) this loop and study the magnetic and plasma properties in and around it. We find that the total current along the loop changes its sign from being antiparallel to parallel to the magnetic field. This is caused by the inclination of the loop together with the footpoint motion. Around the loop the currents form a complex non-force-free helical structure. This is directly related to a bipolar current structure at the loop footpoints at the base of the corona and a local reduction of the background magnetic field (i.e. outside the loop) caused by the plasma flow into and along the loop. The locally reduced magnetic pressure in the loop allows the loop to sustain a higher density, which is crucial for the emission in extreme UV. The acting of the flow on the magnetic field hosting the loop turns out to be also responsible for the observed squashing of the loop. The complex magnetic field and current system surrounding it can be modeled only in 3D MHD models where the magnetic field has to balance the plasma pressure. A 1D coronal loop model or a force-free extrapolation can not capture the current system and the complex interaction of the plasma and the magnetic field in the coronal loop, despite the fact that the loop is under low-$beta$ conditions.
Modern observatories have revealed the ubiquitous presence of magnetohydrodynamic waves in the solar corona. The propagating waves (in contrast to the standing waves) are usually originated in the lower solar atmosphere which makes them particularly relevant for coronal heating. Furthermore, open coronal structures are believed to be the source regions of solar wind, therefore, the detection of MHD waves in these structures is also pertinent to the acceleration of solar wind. Besides, the advanced capabilities of the current generation telescopes have allowed us to extract important coronal properties through MHD seismology. The recent progress made in the detection, origin, and damping of both slow mangetoacoustic waves and Alfv{e}nic waves is presented in this review article especially in the context of open coronal structures. Where appropriate, we give an overview on associated theoretical modelling studies. A few of the important seismological applications of these waves are discussed. The possible role of Aflv{e}nic waves in the acceleration of solar wind is also touched upon.
The heating of the solar chromosphere and corona to the observed high temperatures, imply the presence of ongoing heating that balances the strong radiative and thermal conduction losses expected in the solar atmosphere. It has been theorized for dec ades that the required heating mechanisms of the chromospheric and coronal parts of the active regions, quiet-Sun, and coronal holes are associated with the solar magnetic fields. However, the exact physical process that transport and dissipate the magnetic energy which ultimately leads to the solar plasma heating are not yet fully understood. The current understanding of coronal heating relies on two main mechanism: reconnection and MHD waves that may have various degrees of importance in different coronal regions. In this review we focus on recent advances in our understanding of MHD wave heating mechanisms. First, we focus on giving an overview of observational results, where we show that different wave modes have been discovered in the corona in the last decade, many of which are associated with a significant energy flux, either generated in situ or pumped from the lower solar atmosphere. Afterwards, we summarise the recent findings of numerical modelling of waves, motivated by the observational results. Despite the advances, only 3D MHD models with Alfven wave heating in an unstructured corona can explain the observed coronal temperatures compatible with the quiet Sun, while 3D MHD wave heating models including cross-field density structuring are not yet able to account for the heating of coronal loops in active regions to their observed temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا