ترغب بنشر مسار تعليمي؟ اضغط هنا

Broadening of the drumhead mode spectrum due to in-plane thermal fluctuations of two-dimensional trapped ion crystals in a Penning trap

103   0   0.0 ( 0 )
 نشر من قبل Athreya Shankar
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Two-dimensional crystals of ions stored in Penning traps are a leading platform for quantum simulation and sensing experiments. For small amplitudes, the out-of-plane motion of such crystals can be described by a discrete set of normal modes called the drumhead modes, which can be used to implement a range of quantum information protocols. However, experimental observations of crystals with Doppler-cooled and even near-ground-state-cooled drumhead modes reveal an unresolved drumhead mode spectrum. In this work, we establish in-plane thermal fluctuations in ion positions as a major contributor to the broadening of the drumhead mode spectrum. In the process, we demonstrate how the confining magnetic field leads to unconventional in-plane normal modes, whose average potential and kinetic energies are not equal. This property, in turn, has implications for the sampling procedure required to choose the in-plane initial conditions for molecular dynamics simulations. For current operating conditions of the NIST Penning trap, our study suggests that the two dimensional crystals produced in this trap undergo in-plane potential energy fluctuations of the order of $10$ mK. Our study therefore motivates the need for designing improved techniques to cool the in-plane degrees of freedom.



قيم البحث

اقرأ أيضاً

Planar thermal equilibration is studied using direct numerical simulations of ultracold two-dimensional (2D) ion crystals in a Penning trap with a rotating wall. The large magnetic field of the trap splits the modes that describe in-plane motion of t he ions into two branches: High frequency cyclotron modes dominated by kinetic energy and low frequency $mathbf{E times B}$ modes dominated by potential energy associated with thermal position displacements. Using an eigenmode analysis we extract the equilibration rate between these two branches as a function of the ratio of the frequencies that characterize the two branches and observe this equilibration rate to be exponentially suppressed as the ratio increases. Under experimental conditions relevant for current work at NIST, the predicted equilibration time is orders of magnitude longer than any relevant experimental timescales. We also study the coupling rate dependence on the thermal temperature and the number of ions. Besides, we show how increasing the rotating wall strength improves crystal stability. These details of in-plane mode dynamics help set the stage for developing strategies to efficiently cool the in-plane modes and improve the performance of single-plane ion crystals for quantum information processing.
We investigate the impact of a rotating wall potential on perpendicular laser cooling in a Penning ion trap. By including energy exchange with the rotating wall, we extend previous Doppler laser cooling theory and show that low perpendicular temperat ures are more readily achieved with a rotating wall than without. Detailed numerical studies determine optimal operating parameters for producing low temperature, stable 2-dimensional crystals, important for quantum information processing experiments employing Penning traps.
Penning traps, with their ability to control planar crystals of tens to hundreds of ions, are versatile quantum simulators. Thermal occupations of the motional drumhead modes, transverse to the plane of the ion crystal, degrade the quality of quantum simulations. Laser cooling using electromagnetically induced transparency (EIT cooling) is attractive as an efficient way to quickly initialize the drumhead modes to near ground-state occupations. We numerically investigate the efficiency of EIT cooling of planar ion crystals in a Penning trap, accounting for complications arising from the nature of the trap and from the simultaneous cooling of multiple ions. We show that, in spite of challenges, the large bandwidth of drumhead modes (hundreds of kilohertz) can be rapidly cooled to near ground-state occupations within a few hundred microseconds. Our predictions for the center-of-mass mode include a cooling time constant of tens of microseconds and an enhancement of the cooling rate with increasing number of ions. Successful experimental demonstrations of EIT cooling in the NIST Penning trap [E. Jordan, K. A. Gilmore, A. Shankar, A. Safavi-Naini, M. J. Holland, and J. J. Bollinger, Near ground-state cooling of two-dimensional trapped-ion crystals with more than 100 ions, (2018), submitted.] validate our predictions.
We aim to illuminate how the microscopic properties of a metal surface map to its electric-field noise characteristics. In our system, prolonged heat treatments of a metal film can induce a rise in the magnitude of the electric-field noise generated by the surface of that film. We refer to this heat-induced rise in noise magnitude as a thermal transformation. The underlying physics of this thermal transformation process is explored through a series of heating, milling, and electron treatments performed on a single surface ion trap. Between these treatments, $^{40}$Ca$^+$ ions trapped 70 $mu$m above the surface of the metal are used as detectors to monitor the electric-field noise at frequencies close to 1 MHz. An Auger spectrometer is used to track changes in the composition of the contaminated metal surface. With these tools we investigate contaminant deposition, chemical reactions, and atomic restructuring as possible drivers of thermal transformations. The data suggest that the observed thermal transformations can be explained by atomic restructuring at the trap surface. We hypothesize that a rise in local atomic order increases surface electric-field noise in this system.
Scaling quantum information processors is a challenging task, requiring manipulation of a large number of qubits with high fidelity and a high degree of connectivity. For trapped ions, this could be realized in a two-dimensional array of interconnect ed traps in which ions are separated, transported and recombined to carry out quantum operations on small subsets of ions. Here, we use a junction connecting orthogonal linear segments in a two-dimensional (2D) trap array to reorder a two-ion crystal. The secular motion of the ions experiences low energy gain and the internal qubit levels maintain coherence during the reordering process, therefore demonstrating a promising method for providing all-to-all connectivity in a large-scale, two- or three-dimensional trapped-ion quantum information processor.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا