ترغب بنشر مسار تعليمي؟ اضغط هنا

Protostellar Feedback Processes and the Mass of the First Stars

389   0   0.0 ( 0 )
 نشر من قبل Jonathan C. Tan
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We review theoretical models of Population III.1 star formation, focusing on the protostellar feedback processes that are expected to terminate accretion and thus set the mass of these stars. We discuss how dark matter annihilation may modify this standard feedback scenario. Then, under the assumption that dark matter annihilation is unimportant, we predict the mass of stars forming in 12 cosmological minihalos produced in independent numerical simulations. This allows us to make a simple estimate of the Pop III.1 initial mass function and how it may evolve with redshift.

قيم البحث

اقرأ أيضاً

118 - Rennan Barkana 2016
Understanding the formation and evolution of the first stars and galaxies represents one of the most exciting frontiers in astronomy. Since the universe was filled with hydrogen atoms at early times, the most promising probe of the epoch of the first stars is the prominent 21-cm spectral line of hydrogen. Current observational efforts are focused on the cosmic reionization era, but observations of the pre-reionization cosmic dawn are also promising. While observationally unexplored, theoretical studies predict a rich variety of observational signatures from cosmic dawn. As the first stars formed, their radiation (plus that from stellar remnants) produced significant cosmic events including Lyman-alpha coupling at z~25, and early X-ray heating. Much focus has gone to studying the angle-averaged power spectrum of 21-cm fluctuations. Additional probes include the global (sky-averaged) 21-cm spectrum, and the line-of-sight anisotropy of the 21-cm power spectrum. A particularly striking signature may result from the recently recognized effect of a supersonic relative velocity between the dark matter and gas. Work in this field, focused on understanding the whole era of reionization and cosmic dawn with analytical models and numerical simulations, is likely to grow in intensity and importance, as the theoretical predictions are finally expected to confront 21-cm observations in the coming years. [Abridged]
The feasibility of making highly redshifted HI 21-cm (rest frame) measurements from an early epoch of the Universe between the Dark Ages and Reionization (i.e., z>6 and nu<200 MHz) to probe the effects of feedback from the first stars and quasars is assessed in this paper. It may be possible to determine the distribution of hydrogen through the Universe and to constrain the birth of the first stars and black holes via HI tomography. Such observations may also place limits on the properties of Inflation and any exotic heating mechanisms before the first star formation begins (e.g., dark matter decay). The global (all-sky) HI signal after Recombination has distinct features at different frequencies between 30 and 200 MHz that changes as the relative balance between the CMB and spin temperatures changes due to the expansion of the Universe and the ignition of stars and/or black holes. A technology roadmap to approach these observations beginning with ground-based arrays and ending with a low frequency radio array on the lunar farside is described.
70 - Michael De Becker 2013
Astrochemistry is a discipline that studies physico-chemical processes in astrophysical environments. Such environments are characterized by conditions that are substantially different from those existing in usual chemical laboratories. Models which aim to explain the formation of molecular species in interstellar environments must take into account various factors, including many that are directly, or indirectly related to the populations of massive stars in galaxies. The aim of this paper is to review the influence of massive stars, whatever their evolution stage, on the physico-chemical processes at work in interstellar environments. These influences include the ultraviolet radiation field, the production of high energy particles, the synthesis of radionuclides and the formation of shocks that permeate the interstellar medium.
We present a large suite of simulations of the formation of low-mass star clusters. Our simulations include an extensive set of physical processes -- magnetohydrodynamics, radiative transfer, and protostellar outflows -- and span a wide range of viri al parameters and magnetic field strengths. Comparing the outcomes of our simulations to observations, we find that simulations remaining close to virial balance throughout their history produce star formation efficiencies and initial mass function (IMF) peaks that are stable in time and in reasonable agreement with observations. Our results indicate that small-scale dissipation effects near the protostellar surface provide a feedback loop for stabilizing the star formation efficiency. This is true regardless of whether the balance is maintained by input of energy from large scale forcing or by strong magnetic fields that inhibit collapse. In contrast, simulations that leave virial balance and undergo runaway collapse form stars too efficiently and produce an IMF that becomes increasingly top-heavy with time. In all cases we find that the competition between magnetic flux advection toward the protostar and outward advection due to magnetic interchange instabilities, and the competition between turbulent amplification and reconnection close to newly-formed protostars renders the local magnetic field structure insensitive to the strength of the large-scale field, ensuring that radiation is always more important than magnetic support in setting the fragmentation scale and thus the IMF peak mass. The statistics of multiple stellar systems are similarly insensitive to variations in the initial conditions and generally agree with observations within the range of statistical uncertainty.
We study the formation of very metal-poor stars under protostellar radiative feedback effect. We use cosmological simulations to identify low-mass dark matter halos and star-forming gas clouds within them. We then follow protostar formation and the s ubsequent long-term mass accretion phase of over one million years using two-dimensional radiation-hydrodynamics simulations. We show that the critical physical process that sets the final mass is formation and expansion of a bipolar HII region. The process is similar to the formation of massive primordial stars, but radiation pressure exerted on dust grains also contributes to halting the accretion flow in the low-metallicity case. We find that the net feedback effect in the case with metallicity $Z = 10^{-2}~Z_{odot}$ is stronger than in the case with $Z sim 1~Z_{odot}$. With decreasing metallicity, the radiation pressure effect becomes weaker, but photoionization heating of the circumstellar gas is more efficient owing to the reduced dust attenuation. In the case with $Z = 10^{-2}~Z_{odot}$, the central star grows as massive as 200 solar-masses, similarly to the case of primordial star formation. We conclude that metal-poor stars with a few hundred solar masses can be formed by gas accretion despite the strong radiative feedback.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا