ترغب بنشر مسار تعليمي؟ اضغط هنا

Forward modelling to determine the observational signatures of white-light imaging and interplanetary scintillation for the propagation of an interplanetary shock in the ecliptic plane

121   0   0.0 ( 0 )
 نشر من قبل Ming Xiong
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Ming Xiong




اسأل ChatGPT حول البحث

Recent coordinated observations of interplanetary scintillation (IPS) and stereoscopic heliospheric imagers (HIs) are significant to continuously track the propagation and evolution of solar eruptions throughout interplanetary space. In order to obtain a better understanding of the observational signatures in these two remote-sensing techniques, the magnetohydrodynamics of the macro-scale interplanetary disturbance and the radio-wave scattering of the micro-scale electron-density fluctuation are coupled and investigated using a newly-constructed multi-scale numerical model. This model is then applied to a case of an interplanetary shock propagation within the ecliptic plane. The shock could be nearly invisible to an HI, once entering the Thomson-scattering sphere of the HI. The asymmetry in the optical images between the western and eastern HIs suggests the shock propagation off the Sun-Earth line. Meanwhile, an IPS signal, strongly dependent on the local electron density, is insensitive to the density cavity far downstream of the shock front. When this cavity (or the shock nose) is cut through by an IPS ray-path, a single speed component at the flank (or the nose) of the shock can be recorded; when an IPS ray-path penetrates the sheath between the shock nose and this cavity, two speed components at the sheath and flank can be detected. Moreover, once a shock front touches an IPS ray-path, the derived position and speed at the irregularity source of this IPS signal, together with an assumption of a radial and constant propagation of the shock, can be used to estimate the later appearance of the shock front in the elongation of the HI field of view. The results of synthetic measurements from forward modelling are helpful in inferring the in-situ properties of coronal mass ejection from real observational data via an inverse approach.



قيم البحث

اقرأ أيضاً

89 - S. Dalla , G. De Nolfo , A. Bruno 2020
Context. Solar Energetic Particles (SEPs) with energy in the GeV range can propagate to Earth from their acceleration region near the Sun and produce Ground Level Enhancements (GLEs). The traditional approach to interpreting and modelling GLE observa tions assumes particle propagation only parallel to the magnetic field lines of interplanetary space, i.e. it is spatially 1D. Recent measurements by PAMELA have characterised SEP properties at 1 AU for the ~100 MeV-1 GeV range at high spectral resolution. Aims. We model the transport of GLE-energy solar protons through the Interplanetary Magnetic Field (IMF) using a 3D approach, to assess the effect of the Heliospheric Current Sheet (HCS) and drifts associated to the gradient and curvature of the Parker spiral. The latter are influenced by the IMF polarity. We derive 1 AU observables and compare the simulation results with data from PAMELA. Methods. We use a 3D test particle model including a HCS. Monoenergetic populations are studied first to obtain a qualitative picture of propagation patterns and numbers of crossings of the 1 AU sphere. Simulations for power law injection are used to derive intensity profiles and fluence spectra at 1 AU. A simulation for a specific event, GLE 71, is used to compare with PAMELA data. Results. Spatial patterns of 1 AU crossings and the average number of crossings are strongly influenced by 3D effects, with significant differences between periods of A+ and A- polarities. The decay time constant of 1 AU intensity profiles varies depending on the polarity and position of the observer, and it is not a simple function of the mean free path as in 1D models. Energy dependent leakage from the injection flux tube is particularly important for GLE energy particles, in many cases resulting in a roll-over in the fluence spectrum.
Observation of interplanetary scintillation (IPS) beyond Earth-orbit can be challenging due to the necessity to use low radio frequencies at which scintillation due to the ionosphere could confuse the interplanetary contribution. A recent paper by Ka plan {it et al} (2015) presenting observations using the Murchison Widefield Array (MWA) reports evidence of night-side IPS on two radio sources within their field of view. However, the low time cadence of 2,s used might be expected to average out the IPS signal, resulting in the reasonable assumption that the scintillation is more likely to be ionospheric in origin. To verify or otherwise this assumption, this letter uses observations of IPS taken at a high time cadence using the Low Frequency Array (LOFAR). Averaging these to the same as the MWA observations, we demonstrate that the MWA result is consistent with IPS, although some contribution from the ionosphere cannot be ruled out. These LOFAR observations represent the first of night-side IPS using LOFAR, with solar wind speeds consistent with a slow solar wind stream in one observation and a CME expecting to be observed in another.
Aims. The phase scintillation of the European Space Agencys (ESA) Venus Express (VEX) spacecraft telemetry signal was observed at X-band (lambda = 3.6 cm) with a number of radio telescopes of the European VLBI Network (EVN) in the period 2009-2013. M ethods. We found a phase fluctuation spectrum along the Venus orbit with a nearly constant spectral index of -2.42 +/-0.25 over the full range of solar elongation angles from 0{deg} to 45{deg}, which is consistent with Kolmogorov turbulence. Radio astronomical observations of spacecraft signals within the solar system give a unique opportunity to study the temporal behaviour of the signals phase fluctuations caused by its propagation through the interplanetary plasma and the Earths ionosphere. This gives complementary data to the classical interplanetary scintillation (IPS) study based on observations of the flux variability of distant natural radio sources. Results. We present here our technique and the results on IPS. We compare these with the total electron content (TEC) for the line of sight through the solar wind. Finally, we evaluate the applicability of the presented technique to phase-referencing Very Long Baseline Interferometry (VLBI) and Doppler observations of currently operational and prospective space missions.
We address the effect of particle scattering on the energy spectra of solar energetic electron events using i) an observational and ii) a modeling approach. i) We statistically study observations of the STEREO spacecraft making use of directional ele ctron measurements made with the SEPT instrument in the range of 45 -- 425 keV. We compare the energy spectra of the anti-sunward propagating beam with that one of the backward scattered population and find that, on average, the backward scattered population shows a harder spectrum with the effect being stronger at higher energies. ii) We use a numerical SEP transport model to simulate the effect of particle scattering (both in terms of pitch-angle and perpendicular to the mean field) on the spectrum. We find that pitch-angle scattering can lead to spectral changes at higher energies (E $>100$ keV) and further away from the Sun (r $> 1$ au) which are also often observed. At lower energies, and closer to the Sun the effect of pitch-angle scattering is much reduced so that the simulated energy spectra still resemble the injected power-law functions. When examining pitch-angle dependent spectra, we find, in agreement with the observational results, that the spectra of the backward propagating electrons are harder than that of the forward (from the Sun) propagating population. {We conclude that {it Solar Orbiter} and {it Parker Solar Probe} will be able to observe the unmodulated omni-directional SEP electron spectrum close to the Sun at higher energies, giving a direct indication of the accelerated spectrum. }
134 - M. Amenomori , X. J. Bi , D. Chen 2018
We analyze the Suns shadow observed with the Tibet-III air shower array and find that the shadows center deviates northward (southward) from the optical solar disc center in the Away (Toward) IMF sector. By comparing with numerical simulations based on the solar magnetic field model, we find that the average IMF strength in the Away (Toward) sector is $1.54 pm 0.21_{rm stat} pm 0.20_{rm syst}$ ($1.62 pm 0.15_{rm stat} pm 0.22_{rm syst}$) times larger than the model prediction. These demonstrate that the observed Suns shadow is a useful tool for the quantitative evaluation of the average solar magnetic field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا