ﻻ يوجد ملخص باللغة العربية
We present a fault-tolerant semi-global control strategy for universal quantum computers. We show that N-dimensional array of qubits where only (N-1)-dimensional addressing resolution is available is compatible with fault-tolerant universal quantum computation. What is more, we show that measurements and individual control of qubits are required only at the boundaries of the fault-tolerant computer, i.e. holographic fault-tolerant quantum computation. Our model alleviates the heavy physical conditions on current qubit candidates imposed by addressability requirements and represents an option to improve their scalability.
Reliable qubits are difficult to engineer, but standard fault-tolerance schemes use seven or more physical qubits to encode each logical qubit, with still more qubits required for error correction. The large overhead makes it hard to experiment with
Robustness and reliability are two key requirements for developing practical quantum control systems. The purpose of this paper is to design a coherent feedback controller for a class of linear quantum systems suffering from Markovian jumping faults
We explain how to combine holonomic quantum computation (HQC) with fault tolerant quantum error correction. This establishes the scalability of HQC, putting it on equal footing with other models of computation, while retaining the inherent robustness the method derives from its geometric nature.
We study how dynamical decoupling (DD) pulse sequences can improve the reliability of quantum computers. We prove upper bounds on the accuracy of DD-protected quantum gates and derive sufficient conditions for DD-protected gates to outperform unprote
The scalability of photonic implementations of fault-tolerant quantum computing based on Gottesman-Kitaev-Preskill (GKP) qubits is injured by the requirements of inline squeezing and reconfigurability of the linear optical network. In this work we pr