ترغب بنشر مسار تعليمي؟ اضغط هنا

Feasibility study of Higgs pair creation in gamma gamma collider

115   0   0.0 ( 0 )
 نشر من قبل Yosuke Takubo
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We studied a feasibility of measuring Higgs boson pair production in a Photon Linear Collider. The optimum energy of gamma gamma collision was estimated with a realistic luminosity distribution. We also discussed simulation study for detecting the signal against W boson pair backgrounds.



قيم البحث

اقرأ أيضاً

We studied the feasibility of the measurement of Higgs pair creation at a Photon Linear Collider (PLC). From the sensitivity to the anomalous self-coupling of the Higgs boson, the optimum $gamma gamma$ collision energy was found to be around 270 GeV for a Higgs mass of 120 GeV/$c^2$. We found that large backgrounds such as $gamma gamma rightarrow W^+W^-, ZZ,$ and $bbar{b}bbar{b}$, can be suppressed if correct assignment of tracks to parent partons is achieved and Higgs pair events can be observed with a statistical significance of $sim 5 sigma$ by operating the PLC for 5 years.
Though the predictions of the Standard Model (SM) are in excellent agreement with experiments there are still several theoretical problems, such as fine-tuning and the hierarchy problem. These problems are associated with the Higgs sector of the SM, where it is widely believed that some {it ``new physics} will take over at the TeV scale. One beyond the SM theory which resolves these problems is the Little Higgs (LH) model. In this work we shall investigate the effects of the LH model on $gggg$ scattering; where the process $gggg$ at high energies occurs in the SM through diagrams involving $W$, charged quark and lepton loops (and is, therefore, particularly sensitive to any new physics
We analyzed the double production and the triple self-coupling of the standard model Higgs boson at future $gamma gamma$ collider energies, with the reactions $gammagamma rightarrow f bar f HH$ $(f=b, t)$. We evaluated the total cross section for $fb ar fHH$ and calculated the total number of events considering the complete set of Feynman diagrams at tree-level and for different values of the triple coupling $kappalambda_{HHH}$. We have also analyzed the sensitivity for the considered reaction and we show the results as 95% C.L. regions in the $kappa-M_H$ plane for different values of the center of mass energy and different levels of background. The numerical computation was done for the energies which are expected to be available at a possible Future Linear $gammagamma$ Collider with a center-of-mass energy 500-3000 $GeV$ and luminosities of 1 and $5 ab^{-1}$. We found that the number of events for the process $gammagamma rightarrow t bar t HH$, taking into account the decay products of both $t$ and $H$, is small but enough to obtain information on the triple Higgs boson self-coupling in a independent way, complementing other studies on the triple vertex.
121 - K. Desch , T. Klimkovich , T. Kuhl 2004
We study the potential of the TESLA linear collider operated at a center-of-mass energy of 500 to 1000 GeV for the measurement of the neutral Higgs boson properties within the framework of the MSSM. The process of associated Higgs boson production wi th subsequent decays of Higgs bosons into b-quark and tau-lepton pairs is considered. An integrated luminosity of 500 fb^{-1} is assumed at each energy. The Higgs boson masses and production cross sections are measured by reconstructing the bbbb and bbtautau final states. The precision of these measurements is evaluated in dependence of the Higgs boson masses. Under the assumed experimental conditions a statistical accuracy ranging from 0.1 to 1.0 GeV is achievable on the Higgs boson mass. The topological cross section sigma(e+e- -> HA -> bbbb) can be determined with the relative precision of 1.5 - 6.6 % and cross sections sigma(e+e- -> HA -> bb tautau) and sigma(e+e- -> HA -> tautau bb) with precision of 4 - 30 %. Constraints on the Higgs boson widths can be set exploiting bbtautau channel. The 5sigma discovery limit corresponds to the Higgs mass of around 385 GeV for the degenerate Higgs boson masses in the HA -> bbbb channel at sqrts = 800 GeV with integrated luminosity of 500 fb^{-1}. The potential of the Higgs mass determination for the benchmark point SPS 1a for the process e+e- -> HA -> bbbb at sqrt{s} = 1 TeV and luminosity 1000 fb^{-1} is investigated.
Particles in quantum vortex states (QVS) carrying definite orbital angular momenta (OAM) brings new perspectives in various fundamental interaction processes. When unique properties arise in the QVS, understanding how OAM manifest itself between init ial particles and the outcome in vortex particle collisions becomes essential. This is made possible by applying the complete vortex description for all involved particles such that angular momenta (AM) are represented by explicit quantum numbers and their connections are naturally retrieved. We demonstrate the full-vortex quantum-electrodynamics (QED) results for the Breit-Wheeler pair creation process and derive the AM-dependent selection rule. The numerically resolved cross-sections show anti-symmetric spin polarization and most importantly, the first OAM spectra in vortex collision processes. The latter reveals efficient conversion of OAM to created pairs, leading to featured hollow and ring-shaped structure in the density distribution. These results demonstrate a clear picture in understanding the OAM physics in the scattering processes of high energy particles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا