ترغب بنشر مسار تعليمي؟ اضغط هنا

Study of Higgs Boson Pair Production at Linear Collider

122   0   0.0 ( 0 )
 نشر من قبل Tatsiana Klimkovich
 تاريخ النشر 2004
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the potential of the TESLA linear collider operated at a center-of-mass energy of 500 to 1000 GeV for the measurement of the neutral Higgs boson properties within the framework of the MSSM. The process of associated Higgs boson production with subsequent decays of Higgs bosons into b-quark and tau-lepton pairs is considered. An integrated luminosity of 500 fb^{-1} is assumed at each energy. The Higgs boson masses and production cross sections are measured by reconstructing the bbbb and bbtautau final states. The precision of these measurements is evaluated in dependence of the Higgs boson masses. Under the assumed experimental conditions a statistical accuracy ranging from 0.1 to 1.0 GeV is achievable on the Higgs boson mass. The topological cross section sigma(e+e- -> HA -> bbbb) can be determined with the relative precision of 1.5 - 6.6 % and cross sections sigma(e+e- -> HA -> bb tautau) and sigma(e+e- -> HA -> tautau bb) with precision of 4 - 30 %. Constraints on the Higgs boson widths can be set exploiting bbtautau channel. The 5sigma discovery limit corresponds to the Higgs mass of around 385 GeV for the degenerate Higgs boson masses in the HA -> bbbb channel at sqrts = 800 GeV with integrated luminosity of 500 fb^{-1}. The potential of the Higgs mass determination for the benchmark point SPS 1a for the process e+e- -> HA -> bbbb at sqrt{s} = 1 TeV and luminosity 1000 fb^{-1} is investigated.

قيم البحث

اقرأ أيضاً

83 - K. Desch 2003
This report summarizes the progress in the study of Higgs physics at a future linear electron positron collider at center-of-mass energies up to about 1000 GeV and high luminosity. After the publication of the TESLA Technical Design Report, an extend ed ECFA/DESY study on linear collider physics and detectors was performed. The paper summarizes the status of the studies with main emphasis on recent results obtained in the course of the workshop.
Inclusive Higgs boson pair production through the mechanism of gauge boson fusion e^{+} e^{-} -> V* V* -> h h + X (V=W,Z) in the general Two-Higgs-Doublet Model (2HDM), with h=h^0,H^0,A^0,H^{pm}, is analyzed at order alpha^4_{ew} in the linear collid ers ILC and CLIC. This kind of processes is highly sensitive to the trilinear Higgs (3H) boson self-interactions and hence can be a true keystone in the reconstruction of the Higgs potential. For example, in the ILC at 1 TeV, the most favorable scenarios yield cross-sections up to roughly 1 pb, thus entailing 10^5 events per 100 fb^{-1} of integrated luminosity, whilst remaining fully consistent with the perturbativity and unitarity bounds on the 3H couplings, the electroweak precision data and the constraints from BR(b->sgamma). Comparing with other competing mechanisms, we conclude that the Higgs boson-pair events could be the dominant signature for Higgs-boson production in the TeV-class linear colliders for a wide region of the 2HDM parameter space, with no counterpart in the Minimal Supersymmetric Standard Model. Owing to the extremely clean environment of these colliders, inclusive 2H events should allow a comfortable tagging and might therefore open privileged new vistas into the structure of the Higgs potential.
The production of two weak bosons at the Large Hadron Collider will be one of the most important sources of SM backgrounds for final states with multiple leptons. In this paper we consider several quantities that can help normalize the production of weak boson pairs. Ratios of inclusive cross-sections for production of two weak bosons and Drell-Yan are investigated and the corresponding theoretical errors are evaluated. The possibility of predicting the jet veto survival probability of VV production from Drell-Yan data is also considered. Overall, the theoretical errors on all quantities remain less than 5-20%. The dependence of these quantities on the center of mass energy of the proton-proton collision is also studied.
Pair production of Higgs boson at the Large Hadron Collider (LHC) is known to be important for the determination of Higgs boson self-coupling and the probe of new physics beyond the Standard Model (SM), especially the existence of new fundamental sca lar boson. In this paper we study in detail the Higgs pair production at the LHC in a well-motivated model, the Gauged Two Higgs Doublet Model (G2HDM) in which the two Higgs doublets are properly embedded into a gauged $SU(2)_H$ and a dark matter candidate emerges naturally due to the gauge symmetry. Besides the deviations of Higgs couplings from the SM predictions, the existence of new scalars could enhance the production cross section of Higgs boson pair at the LHC significantly. However, when we take into account the relic density of dark matter and the null result in its direct search, only moderate enhancement can be maintained. We also comment on the capability of distinguishing the signal of a new generic scalar from the SM at the LHC, assuming the Higgs pair production cross sections are the same.
We studied the feasibility of the measurement of Higgs pair creation at a Photon Linear Collider (PLC). From the sensitivity to the anomalous self-coupling of the Higgs boson, the optimum $gamma gamma$ collision energy was found to be around 270 GeV for a Higgs mass of 120 GeV/$c^2$. We found that large backgrounds such as $gamma gamma rightarrow W^+W^-, ZZ,$ and $bbar{b}bbar{b}$, can be suppressed if correct assignment of tracks to parent partons is achieved and Higgs pair events can be observed with a statistical significance of $sim 5 sigma$ by operating the PLC for 5 years.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا