ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurement of 37Ar to support technology for On-site Inspection under the Comprehensive Nuclear-Test-Ban Treaty

241   0   0.0 ( 0 )
 نشر من قبل John Orrell
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

On-Site Inspection (OSI) is a key component of the verification regime for the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Measurements of radionuclide isotopes created by an underground nuclear explosion are a valuable signature of a Treaty violation. Argon-37 is produced from neutron interaction with calcium in soil, 40Ca(n,{alpha})37Ar. For OSI, the 35-day half-life of 37Ar provides both high specific activity and sufficient time for completion of an inspection before decay limits sensitivity. This paper presents a low-background internal-source gas proportional counter with an 37Ar measurement sensitivity level equivalent to 45.1 mBq/SCM in whole air.

قيم البحث

اقرأ أيضاً

An intense source of 37Ar was produced by the (n,alpha) reaction on 40Ca by irradiating 330 kg of calcium oxide in the fast neutron breeder reactor at Zarechny, Russia. The 37Ar was released from the solid target by dissolution in acid, collected fro m this solution, purified, sealed into a small source, and brought to the Baksan Neutrino Observatory where it was used to irradiate 13 tonnes of gallium metal in the Russian-American gallium solar neutrino experiment SAGE. Ten exposures of the gallium to the source, whose initial strength was 409 +/- 2 kCi, were carried out during the period April to September 2004. The 71Ge produced by the reaction 71Ga(nu_e,e^-)71Ge was extracted, purified, and counted. The measured production rate was 11.0 ^+1.0 _-0.9 (stat) +/- 0.6 (syst) atoms of 71Ge/d, which is 0.79 ^+0.09_-0.10 of the theoretically calculated production rate. When all neutrino source experiments with gallium are considered together, there is an indication the theoretical cross section has been overestimated.
89 - O. Sorlin 2012
The evolution of the N=28 shell closure is investigated far from stability. Using the latest results obtained from various experimental techniques, we discuss the main properties of the N=28 isotones, as well as those of the N=27 and N=29 isotones. E xperimental results are confronted to various theoretical predictions. These studies pinpoint the effects of several terms of the nucleon-nucleon interaction, such as the central, the spin-orbit, the tensor and the three-body force components, to account for the modification of the N=28 shell gap and spin-orbit splittings. Analogies between the evolution of the N=28 shell closure and other magic numbers originating from the spin-orbit interaction are proposed (N=14,50, 82 and 90). More generally, questions related to the evolution of nuclear forces towards the drip-line, in bubble nuclei, and for nuclei involved in the r-process nucleosynthesis are proposed and discussed.
Diversity has been used as an effective criteria to optimise test suites for cost-effective testing. Particularly, diversity-based (alternatively referred to as similarity-based) techniques have the benefit of being generic and applicable across diff erent Systems Under Test (SUT), and have been used to automatically select or prioritise large sets of test cases. However, it is a challenge to feedback diversity information to developers and testers since results are typically many-dimensional. Furthermore, the generality of diversity-based approaches makes it harder to choose when and where to apply them. In this paper we address these challenges by investigating: i) what are the trade-off in using different sources of diversity (e.g., diversity of test requirements or test scripts) to optimise large test suites, and ii) how visualisation of test diversity data can assist testers for test optimisation and improvement. We perform a case study on three industrial projects and present quantitative results on the fault detection capabilities and redundancy levels of different sets of test cases. Our key result is that test similarity maps, based on pair-wise diversity calculations, helped industrial practitioners identify issues with their test repositories and decide on actions to improve. We conclude that the visualisation of diversity information can assist testers in their maintenance and optimisation activities.
140 - M. Markova 2020
The validity of the Brink-Axel hypothesis, which is especially important for numerous astrophysical calculations, is addressed for 116,120,124Sn below the neutron separation energy by means of three independent experimental methods. The $gamma$-ray s trength functions (GSFs) extracted from primary $gamma$-decay spectra following charged-particle reactions with the Oslo method and with the Shape method demonstrate excellent agreement with those deduced from forward-angle inelastic proton scattering at relativistic beam energies. In addition, the GSFs are shown to be independent of excitation energies and spins of the initial and final states. The results provide the most comprehensive test of the generalized Brink-Axel hypothesis in heavy nuclei so far, demonstrating its applicability in the energy region of the pygmy dipole resonance.
The energy spectra of neutrons, protons, and alpha-particles have been measured from the d+59Co and 3He+58Fe reactions leading to the same compound nucleus, 61$Ni. The experimental cross sections have been compared to Hauser-Feshbach model calculatio ns using different input level density models. None of them have been found to agree with experiment. It manifests the serious problem with available level density parameterizations especially those based on neutron resonance spacings and density of discrete levels. New level densities and corresponding Fermi-gas parameters have been obtained for reaction product nuclei such as 60Ni,60Co, and 57Fe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا