ﻻ يوجد ملخص باللغة العربية
The validity of the Brink-Axel hypothesis, which is especially important for numerous astrophysical calculations, is addressed for 116,120,124Sn below the neutron separation energy by means of three independent experimental methods. The $gamma$-ray strength functions (GSFs) extracted from primary $gamma$-decay spectra following charged-particle reactions with the Oslo method and with the Shape method demonstrate excellent agreement with those deduced from forward-angle inelastic proton scattering at relativistic beam energies. In addition, the GSFs are shown to be independent of excitation energies and spins of the initial and final states. The results provide the most comprehensive test of the generalized Brink-Axel hypothesis in heavy nuclei so far, demonstrating its applicability in the energy region of the pygmy dipole resonance.
The gamma strength function and level density of 1- states in 96Mo have been extracted from a high-resolution study of the (p,p) reaction at 295 MeV and extreme forward angles. By comparison with compound nucleus $gamma$ decay experiments, this allow
Experimental tests of the Brink-Axel hypothesis relating gamma strength functions (GSF) deduced from absorption and emission experiments are discussed. High-resolution inelastic proton scattering at energies of a few hundred MeV and at very forwrd an
The pygmy dipole resonance has been studied in the proton-magic nucleus 124Sn with the (a,ag) coincidence method at E=136 MeV. The comparison with results of photon-scattering experiments reveals a splitting into two components with different structu
Scattering of protons of several hundred MeV is a promising new spectroscopic tool for the study of electric dipole strength in nuclei. A case study of 208Pb shows that at very forward angles J^pi = 1- states are strongly populated via Coulomb excita
New experimental data on the neutron single-particle character of the Pygmy Dipole Resonance (PDR) in $^{208}$Pb are presented. They were obtained from $(d,p)$ and resonant proton scattering experiments performed at the Q3D spectrograph of the Maier-