ترغب بنشر مسار تعليمي؟ اضغط هنا

Structure of the neutron-rich N=7 isotones 10Li and 9He

139   0   0.0 ( 0 )
 نشر من قبل Nigel Orr
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The near threshold structure of the unbound N=7 isotones 10Li and 9He has been investigated using proton removal and breakup from intermediate energy (35 MeV/nucleon) secondary beams of 11Be and 14,15B. The coincident detection of the beam velocity 9Li and 8He fragments and neutrons permitted the relative energy of the in-flight decay of 10Li and 9He to be reconstructed. Both systems were found to exhibited virtual s-wave strength near threshold together with a higher-lying resonance.



قيم البحث

اقرأ أيضاً

The structure of the unbound nuclei 9He, 10Li and 13Be has been explored using breakup and proton-knockout from intermediate energy 11Be and 14,15B beams. In the case of both N=7 isotones, virtual s-wave strength is observed near threshold together w ith a higher-lying resonance. A very narrow structure at threshold in the 12Be+n relative energy spectrum is demonstrated to arise from the decay of the 14Be*(2+), discounting earlier reports of a strong virtual s-wave state in 13Be.
104 - Alexandra Gade 2018
The nuclear potential and resulting shell structure are well established for the valley of stability, however, dramatic modifications to the familiar ordering of single-particle orbitals in rare isotopes with a large imbalance of proton and neutron n umbers have been found: new shell gaps emerge and conventional magic numbers are no longer valid. This article outlines some of the recent in-beam gamma-ray spectroscopy measurements at NSCL aimed at shedding light on the evolution of nuclear structure around neutron number N = 28 in neutron-rich Ar and S isotopes.
A measurement of the $^{50}$Ti($d$,$p$)$^{51}$Ti reaction at 16 MeV was performed using a Super Enge Split Pole Spectrograph to measure the magnitude of the $N=32$ subshell gap in Ti. Seven states were observed that had not been observed in previous ($d$,$p$) measurements, and the textit{L} transfer values for six previously measured states were either changed or measured for the first time. The results were used to determine single neutron energies for the $p_{3/2}$, $p_{1/2}$ and $f_{5/2}$ orbitals. The resulting single neutron energies in $^{51}$Ti confirm the existence of the $N=32$ gap in Ti. These single neutron energies and those from previous measurements in $^{49}$Ca, $^{53}$Cr and $^{55}$Fe are compared to values from a covariant density functional theory calculation.
Background: Neutron-rich nuclei around neutron number N = 60 show a dramatic shape transition from spherical ground states to prolate deformation in 98Sr and heavier nuclei. Purpose: The purpose of this study is to investigate the single-particle str ucture approaching the shape transitional region. Method: The level structures of neutron-rich 93,94,95Sr were studied via the d(94,95,96Sr,t) one-neutron stripping reactions at TRIUMF using a beam energy of 5.5 AMeV. {gamma}-rays emitted from excited states and recoiling charged particles were detected by using the TIGRESS and SHARC arrays, respectively. States were identified by gating on the excitation energy and, if possible, the coincident {gamma} radiation. Results: Triton angular distributions for the reactions populating states in ejectile nuclei 93,94,95Sr were compared with distorted wave Born approximation calculations to assign and revise spin and parity quantum numbers and extract spectroscopic factors. The results were compared with shell model calculations and the reverse (d,p) reactions and good agreement was obtained. Conclusions: The results for the d(94Sr,t)93Sr and d(95Sr,t)94Sr reactions are in good agreement with shell model calculations. A two level mixing analysis for the 0+ states in 94Sr suggest strong mixing of two shapes. For the d(96Sr,t)95Sr reaction the agreement with the shell model is less good. The configuration of the ground state of 96Sr is already more complex than predicted, and therefore indications for the shape transition can already be observed before N = 60.
100 - T. Gogami , C. Chen , D. Kawama 2016
The missing mass spectroscopy of the $^{7}_{Lambda}$He hypernucleus was performed, using the $^{7}$Li$(e,e^{prime}K^{+})^{7}_{Lambda}$He reaction at the Thomas Jefferson National Accelerator Facility Hall C. The $Lambda$ binding energy of the ground state (1/2$^{+}$) was determined with a smaller error than that of the previous measurement, being $B_{Lambda}$ = 5.55 $pm$ 0.10(stat.) $pm$ 0.11(sys.) MeV. The experiment also provided new insight into charge symmetry breaking in p-shell hypernuclear systems. Finally, a peak at $B_{Lambda}$ = 3.65 $pm$ 0.20(stat.) $pm$ 0.11(sys.) MeV was observed and assigned as a mixture of 3/2$^{+}$ and 5/2$^{+}$ states, confirming the gluelike behavior of $Lambda$, which makes an unstable state in $^{6}$He stable against neutron emission.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا